首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complex viscosity * = -i predictions of the Dasbach-Manke-Williams (DMW) internal viscosity (IV) model for dilute polymer solutions, which employs a mathematically rigorous formulation of the IV forces, are examined in the limit of infinite IV over the full range of frequency number of submolecules N, and hydrodynamic interaction h *. Although the DMW model employs linear entropic spring forces, infinite IV makes the submolecules rigid by suppressing spring deformations, thereby emulating the dynamics of a freely jointed chain of rigid links. The DMW () and () predictions are in close agreement with results for true freely jointed chain models obtained by Hassager (1974) and Fixman and Kovac (1974 a, b) with far more complicated formalisms. The infinite-frequency dynamic viscosity predicted by the DMW infinite-IV model is also found to be in remarkable agreement with the calculations of Doi et al. (1975). In contrast to the other freely jointed chain models cited above, however, the DMW model yields a simple closed-form solution for complex viscosity expressed in terms of Rouse-Zimm relaxation times.  相似文献   

2.
The flow and heat transfer from a heated semi-infinite horizontal circular cylinder which is moving with a constant speed into a porous medium is considered. It is assumed that the Grashof and Reynolds numbers are large so that the governing equations are the three dimensional boundary-layer equations. A numerical procedure for solving these equations is described and the asymptotic solutions which are valid both near and distant from the leading edge of the cylinder are presented. The range of validity of these asymptotic solutions is discussed and the results are compared in detail with the full numerical solution. The problem is of practical importance, for example in the drilling of pipes into a geothermal reservoir.
Freie erzwungene Konvektion von einem beheizten schlanken horizontalen Zylinder, eingebettet in ein poröses Medium
Zusammenfassung Es wird die Strömung und der Wärmeübergang an einem beheizten, halbunendlichen horizontalen Kreiszylinder betrachtet, der mit konstanter Geschwindigkeit sich in ein poröses Medium bewegt. Dabei wird angenommen, daß die Grashof- und Reynolds-Zahlen groß sind, so daß die Bestimmungsgleichungen von den dreidimensionalen Grenzschichtgleichungen gebildet werden. Es wird ein numerisches Verfahren zur Lösung dieser Gleichungen beschrieben und eine asymptotische Lösung präsentiert, die sowohl in der Nähe als auch in großem Abstand von dem vorderen Ende des Zylinders gültig ist. Der Gültigkeitsbereich dieser asymptotischen Lösungen wird diskutiert und die Ergebnisse werden im Detail mit vollständigen numerischen Lösungen verglichen. Das Problem ist z.B. beim Eindringen von Rohrleitungen in geothermische Reservoire von praktischer Wichtigkeit.

Nomenclature a radius of cylinder - Gr Grashof number (=g(Tw-Ta/2) - g acceleration due to gravity - permeability in the porous medium - Nu local Nusselt number - total heat flux from cylinder - q w heat flux from cylinder - r radial co ordinate - Ra Rayleigh number (=g (Tw - Tt8) a/ ) - Re Reynolds number (=U t8 a/) - T temperature - u, v, w speeds inx, , r directions - x axial co ordinate - equivalent thermal diffusivity - thermal expansion coefficient - ratioGr/Re - similarity variable - dimensionless temperature (=(T- T)/(T w- T) - kinematic viscosity - azimuthal co ordinate - w cylinder surface - free stream  相似文献   

3.
Consider the equations of Navier-Stokes on n with initial data U0 of the form U0(x)=u0(x)–Mx, where M is an n×n matrix with constant real entries and u0 Lp(n). It is shown that under these assumptions the equations of Navier-Stokes admit a unique local solution in Lp(n). Moreover, if ||etM||1 for all t0, then this mild solution is even analytic in x. This is surprising since the underlying semigroup of Ornstein-Uhlenbeck type is not analytic, in contrast to the Stokes semigroup.Acknowledgement It is our pleasure to thank G. METAFUNE, E. PRIOLA and A. RHANDI for fruitful discussions on the Ornstein-Uhlenbeck  相似文献   

4.
The effect of surface mass transfer on buoyancy induced flow in a variable porosity medium adjacent to a heated vertical plate is studied for high Rayleigh numbers. Similarity solutions are obtained within the frame work of boundary layer theory for a power law variation in surface temperature,T Wx and surface injectionv Wx(–1/2). The analysis incorporates the expression connecting porosity and permeability and also the expression connecting porosity and effective thermal diffusivity. The influence of thermal dispersion on the flow and heat transfer characteristics are also analysed in detail. The results of the present analysis document the fact that variable porosity enhances heat transfer rate and the magnitude of velocity near the wall. The governing equations are solved using an implicit finite difference scheme for both the Darcy flow model and Forchheimer flow model, the latter analysis being confined to an isothermal surface and an impermeable vertical plate. The influence of the intertial terms in the Forchheimer model is to decrease the heat transfer and flow rates and the influence of thermal dispersion is to increase the heat transfer rate.
Der Effekt des Oberflächenstoffaustausches bei auftriebsinduzierter Strömung in einem variablen porösen Medium, das an eine vertikale, beheizte Platte angrenzt
Zusammenfassung Es wird der Effekt des Oberflächenstoffaustausches in auftriebsinduzierter Strömung in einem variablen porösen Medium, das an eine vertikale, beheizte Platte angrenzt, für große Reynoldszahlen untersucht. Ähnliche Lösungen werden im Rahmen der Grenzschicht-Theorie, durch Variation des Potenzansatzes der Oberflächentemperatur,T Wx , und der Oberflächengeschwindigkeit,v Wx(–1/2), erreicht. Die Analyse vereinigt sowohl den Ausdruck, der Porösität und Permeabilität verbindet, als auch den Ausdruck, der Porösität und Wärmeleitfähigkeit miteinander verbindet. Der Einfluß der Temperaturverteilung auf Strömung und Wärmeübergangskennzahlen wird ebenfalls im Detail analysiert. Als Ergebnis der vorliegenden Untersuchung ergibt sich die Tatsache, daß variable Porösität Wärmeübertragungsrate und Betrag der Geschwindigkeit in Wandnähe steigert. Die bestimmenden Gleichungen, sowohl für das Darcysche Strömungsmodell als auch für das Forchheimersche Strömungsmodell, werden mit Hilfe eines implizierten Differenzenschemas gelöst. Die Berechnung wird für die beiden Fälle, isotherme Oberfläche und undurchlässige vertikale Platte, angewandt. Der Einfluß der Terme für die Trägheitskräfte im Forchheimerschen Modell senkt Wärmeübergangs- und Durchgangsrate, wogegen die Wärmeübergangsrate durch den Einfluß der Temperaturverteilung erhöht wird.

Nomenclature a constant defined by Eq. (12) - A constant defined by Eq. (12) - B constant defined by Eq. (3) - b s/f ratio of thermal conductivities - C constant defined by Eq. (1) - C P specific heat of the convective fluid - d particle diameter - f dimensionless function defined by Eq. (14) - f w lateral mass flux parameter - g acceleration due to gravity - k 0 mean permeability of the mediumk 0= 0 3 d 2/150 (1– 0)2 k 0=1.75d/(1– 0) 150 (Inertia parameter) - L length of the source or sink - m mass transfer - n constant defined in Eq. (12) - k (y) permeability of the porous medium - k (y) interial coefficient in the Ergun expression - Gr modified Grashof numberGr=(g k 0 k 0 (T w–))/ 2 - R a Rayleigh number (g k 0 x T w–)/ - R ad modified Rayleigh number (g k 0 d|T w–|)/ - N u Nusselt number - s x/d - Q overall heat transfer rate - T temperature - T w surface temperature - T ambient fluid temperature - u velocity in vertical direction - v velocity in horizontal direction - x vertical coordinate - y horizontal coordinate Greek symbols 0 mean thermal diffusivity f/ Cp - coefficient of thermal expansion - constant defined in Eq. (4) - ratio of particle to bed diameter - e effective thermal conductivity - f thermal conductivity of fluid - s thermal conductivity of solid - dimensionless similarity variable in Eq. (13) - value of at the edge of the boundary layer - constant defined in Eq. (1) - e effective molecular thermal diffusivity - (y) porosity of the medium - 0 mean porosity of the medium - viscosity of the fluid - 0 density of the convective fluid - stream function - w condition at the wall - condition at infinity  相似文献   

5.
Zusammenfassung Im Rahmen von Strömungs- und Wärmeübergangsuntersuchungen an flüssig-flüssig Zweiphasenströmungen im Ringspalt ist die Kenntnis der Lage und der Struktur der Phasengrenze von entscheidender Bedeutung. Aus diesem Grunde wurde ein Meßverfahren entwickelt und erprobt, welches darauf beruht, daß die Kapazität eines elektrischen Kondensators von der Beschaffenheit des Dielektrikums abhängt.
A capacitance method to determine the position and structure of the interface in an annular flow
For studying the flowpattern and the heat transfer in liquidliquid two-phase flows in annuli the position and structure of the interface are of desive importance. For this reason an experimental method has been developed. It is based on the fact, that the capacitance of an electric condenser depends on the nature of the dielectricum.

Formelzeichen a Kondensatorlänge - C Kapazität (Meßgröße) - C 0 Schaltungskapazität - C 1 Teilkapazität (öl) - C 2 Teilkapazität (Wasser) - C3 Teilkapazität (Glas) - CL Teilkapazität (Luft) - f Frequenz - g Rohrwandstärke - j Einheitsvektor - Massenstrom (öl) - Massenstrom (Wasser) - p/l Reibungsdruckverlust - r 0=r i +s Lage der Phasengrenzfläche - R 0=r 0/r i dimensionsloser Radius - r a Außenrohrradius - r a= ra/ri dimensionsloser Radius - ri Kernrohrradius - ri Ohmscher Widerstand - R 2 Ohmscher Widerstand - Ros Ohmscher Widerstand - s ölschichtdicke - T Schwingungsdauer - t l Schwingungsdauer - U C Kondensatorspannung - U G Grenzspannung - U os Oszillatorspannung - x Spannungsverhältnis - xc kapazitiver Widerstand - y Spannungsverhältnis - Z komplexer Widerstand Griechische Zeichen dielektrischer Verlustwinkel - 0 allgemeine Dielektrizitätskonstante - 1 Dielektrizitätskonstante (öl) - 2 Dielektrizitätskonstante (Wasser) - 3 Dielektrizitätskonstante (Glas) - L Dielektrizitätskonstante (Luft) - 1 dynamische Viskosität (ö1) - 2 dynamische Viskosität (Wasser) - 1 Dichte (öl) - 2 Dichte (Wasser) - g Grenzflächenspannung - Kreisfrequenz Herrn Prof. Dr.-Ing. U. Grigull zum 70. Geburtstag gewidmet  相似文献   

6.
The harmonic content of the nonlinear dynamic behaviour of 1% polyacrylamide in 50% glycerol/water was studied using a standard Model R 18 Weissenberg Rheogoniometer. The Fourier analysis of the Oscillation Input and Torsion Head motions was performed using a Digital Transfer Function Analyser.In the absence of fluid inertia effects and when the amplitude of the (fundamental) Oscillation Input motion I is much greater than the amplitudes of the Fourier components of the Torsion Head motion Tn empirical nonlinear dynamic rheological propertiesG n (, 0),G n (, 0) and/or n (, 0), n (, 0) may be evaluated without a-priori-knowledge of a rheological constitutive equation. A detailed derivation of the basic equations involved is presented.Cone and plate data for the third harmonic storage modulus (dynamic rigidity)G 3 (, 0), loss modulusG 3 (, 0) and loss angle 3 (, 0) are presented for the frequency range 3.14 × 10–2 1.25 × 102 rad/s at two strain amplitudes, CP 0 = 2.27 and 4.03. Composite cone and plate and parallel plates data for both the third and fifth harmonic dynamic viscosities 3 (, 0), S (, 0) and dynamic rigiditiesG 3 (, 0),G 5 (, 0) are presented for strain amplitudes in the ranges 1.10 CP 0 4.03 and 1.80 PP 0 36 for a single frequency, = 3.14 × 10–1 rad/s. Good agreement was obtained between the results from both geometries and the absence of significant fluid inertia effects was confirmed by the superposition of the data for different gap widths.  相似文献   

7.
Summary Let denote the congruence of null geodesics associated with a given optical observer inV 4. We prove that determines a unique collection of vector fieldsM() ( =1, 2, 3) and (0) overV 4, satisfying a weak version of Killing's conditions.This allows a natural interpretation of these fields as the infinitesimal generators of spatial rotations and temporal translation relative to the given observer. We prove also that the definition of the fieldsM() and (0) is mathematically equivalent to the choice of a distinguished affine parameter f along the curves of, playing the role of a retarded distance from the observer.The relation between f and other possible definitions of distance is discussed.
Sommario Sia la congruenza di geodetiche nulle associata ad un osservatore ottico assegnato nello spazio-tempoV 4. Dimostriamo che determina un'unica collezione di campi vettorialiM() ( =1, 2, 3) e (0) inV 4 che soddisfano una versione in forma debole delle equazioni di Killing. Ciò suggerisce una naturale interpretazione di questi campi come generatori infinitesimi di rotazioni spaziali e traslazioni temporali relative all'osservatore assegnato. Dimostriamo anche che la definizione dei campiM(), (0) è matematicamente equivalente alla scelta di un parametro affine privilegiato f lungo le curve di, che gioca il ruolo di distanza ritardata dall'osservatore. Successivamente si esaminano i legami tra f ed altre possibili definizioni di distanza in grande.


Work performed in the sphere of activity of: Gruppo Nazionale per la Fisica Matematica del CNR.  相似文献   

8.
The equilibrium states of homogeneous turbulence simultaneously subjected to a mean velocity gradient and a rotation are examined by using asymptotic analysis. The present work is concerned with the asymptotic behavior of quantities such as the turbulent kinetic energy and its dissipation rate associated with the fixed point (/kS)=0, whereS is the shear rate. The classical form of the model transport equation for (Hanjalic and Launder, 1972) is used. The present analysis shows that, asymptotically, the turbulent kinetic energy (a) undergoes a power-law decay with time for (P/)<1, (b) is independent of time for (P/)=1, (c) undergoes a power-law growth with time for 1<(P/)<(C 2–1), and (d) is represented by an exponential law versus time for (P/)=(C 2–1)/(C 1–1) and (/kS)>0 whereP is the production rate. For the commonly used second-order models the equilibrium solutions forP/,II, andIII (whereII andIII are respectively the second and third invariants of the anisotropy tensor) depend on the rotation number when (P/kS)=(/kS)=0. The variation of (P/kS) andII versusR given by the second-order model of Yakhot and Orzag are compared with results of Rapid Distortion Theory corrected for decay (Townsend, 1970).  相似文献   

9.
The rapidly forced pendulum equation with forcing sin((t/), where =<0p,p = 5, for 0, sufficiently small, is considered. We prove that stable and unstable manifolds split and that the splitting distanced(t) in the ( ,t) plane satisfiesd(t) = sin(t/) sech(/2) +O( 0 exp(–/2)) (2.3a) and the angle of transversal intersection,, in thet = 0 section satisfies 2 tan/2 = 2S s = (/2) sech(/2) +O(( 0 /) exp(–/2)) (2.3b) It follows that the Melnikov term correctly predicts the exponentially small splitting and angle of transversality. Our method improves a previous result of Holmes, Marsden, and Scheuerle. Our proof is elementary and self-contained, includes a stable manifold theorem, and emphasizes the phase space geometry.  相似文献   

10.
The effects of MHD free convection and mass transfer are taken into account on the flow past oscillating infinite coaxial vertical circular cylinder. The analytical expressions for velocity, temperature and concentration of the fluid are obtained by using perturbation technique.
Einwirkungen von freier MHD-Konvektion und Stoffübertragung auf eine Strömung nach einem schwingenden unendlichen koaxialen vertikalen Zylinder
Zusammenfassung Die Einwirkungen der freien MHD-Konvektion und Stoffübertragung auf eine Strömung nach einem schwingenden, unendlichen, koaxialen, vertikalen Zylinder wurden untersucht. Die analytischen Ausdrücke der Geschwindigkeit, Temperatur und Fluidkonzentration sind durch die Perturbationstechnik erhalten worden.

Nomenclature C p Specific heat at constant temperature - C the species concentration near the circular cylinder - C w the species concentration of the circular cylinder - C the species concentration of the fluid at infinite - * dimensionless species concentration - D chemical molecular diffusivity - g acceleration due to gravity - Gr Grashof number - Gm modified Grashof number - K thermal conductivity - Pr Prandtl number - r a ,r b radius of inner and outer cylinder - a, b dimensionless inner and outer radius - r,r coordinate and dimensionless coordinate normal to the circular cylinder - Sc Schmidt number - t time - t dimensionless time - T temperature of the fluid near the circular cylinder - T w temperature of the circular cylinder - T temperature of the fluid at infinite - u velocity of the fluid - u dimensionless velocity of the fluid - U 0 reference velocity - z,z coordinate and dimensionless coordinate along the circular cylinder - coefficient of volume expansion - * coefficient of thermal expansion with concentration - dimensionless temperature - H 0 magnetic field intensity - coefficient of viscosity - e permeability (magnetic) - kinematic viscosity - electric conductivity - density - M Hartmann number - dimensionless skin-friction - frequency - dimensionless frequency  相似文献   

11.
Summary The effects of superposing streamwise vorticity, periodic in the lateral direction, upon two-dimensional asymptotic suction flow are analyzed. Such vorticity, generated by prescribing a spanwise variation in the suction velocity, is known to play an important role in unstable and turbulent boundary layers. The flow induced by the variation has been obtained for a freestream velocity which (i) is steady, (ii) oscillates periodically in time, (iii) changes impulsively from rest. For the oscillatory case it is shown that a frequency can exist which maximizes the induced, unsteady wall shear stress for a given spanwise period. For steady flow the heat transfer to, or from a wall at constant temperature has also been computed.Nomenclature (x, y, z) spatial coordinates - (u, v, w) corresponding components of velocity - (, , ) corresponding components of vorticity - t time - stream function for v and w - v w mean wall suction velocity - nondimensional amplitude of variation in wall suction velocity - characteristic wavenumber for variation in direction of z - T temperature - P pressure - density - coefficient of kinematic viscosity - coefficient of thermal diffusivity - (/v w)2 - frequency of oscillation of freestream velocity - nondimensional amplitude of freestream oscillation - /v w 2 - z z - yv w y/ - v w 2 t/4 - /v w - U 0 characteristic freestream velocity - u/U 0 - coefficient of viscosity - w wall shear stress - Prandtl number (/) - q heat transfer to wall - T w wall temperature - T (T wT)/(T w–)  相似文献   

12.
    
Heat transfer in the flow of a conducting Fluid between two non-conducting porous disks (—one is rotating and other is stationary) in the presence of a transverse uniform magnetic field and under uniform suction, is studied. Asymptotic solutions are obtained for R«M 2. The rate of Heat flux from the disks and the temperature distribution are investigated. It is observed that the temperature distribution and heat flux increase with the increase of magnetic field.Nomenclature B 0 imposed magnetic field - density of the fluid - velocity vector - p pressure - viscosity of the fluid - kinematic viscosity of the fluid - J r radial component of current density - J azimuthal component of current density - J z axial component of current density - m magnetic permeability - electrical conductivity of the fluid - U suction velocity - E r radial component of electric field - E azimuthal component of electric field - E z axial component of electric field - c p specific heat at constant pressure - angular velocity of the rotating disk - u radial component of velocity - v azimuthal component of velocity - w axial component of velocity - F() dimensionless function defined in (17) - G() dimensionless function defined in (17) - () dimensionless function defined in (18) - () dimensionless function defined in (18) - dimensionless axial distance - R suction Reynolds number, Uh/ - R 1 rotation Reynolds number, h 2/ - M Hartmann number, B 0 h(/)1/2 - P Prandtl number, c p /R - = 2R 1 2 /R 2 - dimensionless quantity - N Perturbation parameter, M 2/R - k Co-efficient of thermal conductivity - s Dimensionless quantity defined in (30) as . - E Dimensionless quantity defined as . - X Dimensionless quantity defined as . - K Constant defined in (22)  相似文献   

13.
Turbulent tube flow and the flow through a porous medium of aqueous hydroxypropylguar (HPG) solutions in concentrations from 100 wppm to 5000 wppm is investigated. Taking the rheological flow curves into account reveals that the effectiveness in turbulent tube flow and the efficiency for the flow through a porous medium both start at the same onset wall shear stress of 1.3 Pa. The similarity of the curves = ( w ) and = ( w ), respectively, leads to a simple linear relation / =k, where the constantk or proportionality depends uponc. This offers the possibility to deduce (for turbulent tube flow) from (for flow through a porous medium). In conjunction with rheological data, will reveal whether, and if yes to what extent, drag reduction will take place (even at high concentrations).The relation of our treatment to the model-based Deborah number concept is shown and a scale-up formula for the onset in turbulent tube flow is deduced as well.  相似文献   

14.
In the method of volume averaging, the difference between ordered and disordered porous media appears at two distinct points in the analysis, i.e. in the process of spatial smoothing and in the closure problem. In theclosure problem, the use of spatially periodic boundary conditions isconsistent with ordered porous media and the fields under consideration when the length-scale constraint,r 0L is satisfied. For disordered porous media, spatially periodic boundary conditions are an approximation in need of further study.In theprocess of spatial smoothing, average quantities must be removed from area and volume integrals in order to extractlocal transport equations fromnonlocal equations. This leads to a series of geometrical integrals that need to be evaluated. In Part II we indicated that these integrals were constants for ordered porous media provided that the weighting function used in the averaging process contained thecellular average. We also indicated that these integrals were constrained by certain order of magnitude estimates for disordered porous media. In this paper we verify these characteristics of the geometrical integrals, and we examine their values for pseudo-periodic and uniformly random systems through the use of computer generated porous media.

Nomenclature

Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - a i i=1, 2, 3 gaussian probability distribution used to locate the position of particles - I unit tensor - L general characteristic length for volume averaged quantities, m - L characteristic length for , m - L characteristic length for , m - characteristic length for the -phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1, 2, 3 lattice vectors, m - m convolution product weighting function - m v special convolution product weighting function associated with the traditional volume average - n i i=1, 2, 3 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - r position vector, m - r m support of the weighting functionm, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume,, m3 - x positional vector locating the centroid of an averaging volume, m - x 0 reference position vector associated with the centroid of an averaging volume, m - y position vector locating points relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - /L, small parameter in the method of spatial homogenization - standard deviation ofa i - r standard deviation ofr - r intrinsic phase average of   相似文献   

15.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

16.
In this paper, a method using the mean velocity profiles for the buffer layer was developed for the estimation of the virtual origin over a riblets surface in an open channel flow. First, the standardized profiles of the mixing length were estimated from the velocity measurement in the inner layer, and the location of the edge of the viscous layer was obtained. Then, the virtual origins were estimated by the best match between the measured velocity profile and the equations of the velocity profile derived from the mixing length profiles. It was made clear that the virtual origin and the thickness of the viscous layer are the function of the roughness Reynolds number. The drag variation coincided well with other results.Nomenclature f r skin friction coefficient - f ro skin friction coefficient in smooth channel at the same flow quantity and the same energy slope - g gravity acceleration - H water depth from virtual origin to water surface - H + u*H/ - H false water depth from top of riblets to water surface - H + u*H/ - I e streamwise energy slope - I b bed slope - k riblet height - k + u*k/ - l mixing length - l s standardized mixing length - Q flow quantity - Re Reynolds number volume flow/unit width/v - s riblet spacing - u mean velocity - u* friction velocity = - u* false friction velocity = - y distance from virtual origin - y distance from top of riblet - y 0 distance from top of riblet to virtual origin - y v distance from top of riblet to edge of viscous layer - y + u*y/ - y + u*y/ - y 0 + u*y 0/ - u + u*y/ - shifting coefficient for standardization - thickness of viscous layer=y 0+y - + u*/ - + u*/ - eddy viscosity - ridge angle - v kinematic viscosity - density - shear stress  相似文献   

17.
Positively invariant regions for a problem in phase transitions   总被引:1,自引:0,他引:1  
Positively invariant regions for the system v t + p(W) x = V xx , W t V x = W xx are constructed where p < 0, w < , w > , p(w) = 0, w , > 0. Such a choice of p is motivated by the Maxwell construction for a van der Waals fluid. The method of an analysis is a modification of earlier ideas of Chueh, Conley, & Smoller [1]. The results given here provide independent L bounds on the solution (w, v).Dedicated to Professor James Serrin on the occasion of his sixtieth birthday  相似文献   

18.
New asymptotic approaches for dynamical systems containing a power nonlinear term x n are proposed and analyzed. Two natural limiting cases are studied: n 1 + , 1 and n . In the firstcase, the 'small method' (SM)is used and its applicability for dynamical problems with the nonlinearterm sin as well as the usefulness of the SMfor the problem with small denominators are outlined. For n , a new asymptotic approach is proposed(conditionally we call it the 'large method' –LM). Error estimations lead to the followingconclusion: the LM may be used, even for smalln, whereas the SM has a narrow application area. Both of the discussed approaches overlap all values ofthe parameter n.  相似文献   

19.
In this paper, the derivation of macroscopic transport equations for this cases of simultaneous heat and water, chemical and water or electrical and water fluxes in porous media is presented. Based on themicro-macro passage using the method of homogenization of periodic structures, it is shown that the resulting macroscopic equations reveal zero-valued cross-coupling effects for the case of heat and water transport as well as chemical and water transport. In the case of electrical and water transport, a nonsymmetrical coupling was found.Notations b mobility - c concentration of a chemical - D rate of deformation tensor - D molecular diffusion coefficient - D ij eff macroscopic (or effective) diffusion tensor - electric field - E 0 initial electric field - k ij molecular tensor - j, j *, current densities - K ij macroscopic permeability tensor - l characteristic length of the ERV or the periodic cell - L characteristic macroscopic length - L ijkl coupled flows coefficients - n i unit outward vector normal to - p pressure - q t ,q t + , heat fluxes - q c ,q c + , chemical fluxes - s specific entropy or the entropy density - S entropy per unit volume - t time variable - t ij local tensor - T absolute temperature - v i velocity - V 0 initial electric potential - V electric potential - x macroscopic (or slow) space variable - y microscopic (or fast) space variable - i local vectorial field - i local vectorial field - electric charge density on the solid surface - , bulk and shear viscosities of the fluid - ij local tensor - ij local tensor - i local vector - ij molecular conductivity tensor - ij eff effective conductivity tensor - homogenization parameter - fluid density - 0 ion-conductivity of fluid - ij dielectric tensor - i 1 , i 2 , i 3 local vectors - 4 local scalar - S solid volume in the periodic cell - L volume of pores in the periodic cell - boundary between S and L - s rate of entropy production per unit volume - total volume of the periodic cell - l volume of pores in the cell On leave from the Politechnika Gdanska; ul. Majakowskiego 11/12, 80-952, Gdask, Poland.  相似文献   

20.
We consider the parametrized family of equations tt ,u- xx u-au+u 2 2 u=O,x(0,L), with Dirichlet boundary conditions. This equation has finite-dimensional invariant manifolds of solutions. Studying the reduced equation to a four-dimensional manifold, we prove the existence of transversal homoclinic orbits to periodic solutions and of invariant sets with chaotic dynamics, provided that =2, 3, 4,.... For =1 we prove the existence of infinitely many first integrals pairwise in involution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号