首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High resolution infrared emission spectra of ZnH, ZnD, CdH, and CdD have been recorded with a Fourier transform spectrometer. The v = 1 → 0 and v = 2 → 1 bands of ZnH, ZnD, CdH, and CdD, as well as the v = 3 → 2 band of ZnD were observed for the X2Σ+ ground electronic state. In addition, new rotational spectra have been recorded for CdH and CdD using a tunable far-infrared spectrometer, and pure rotational transitions in the v = 1 level of the ground state were measured. The new data were combined with the previous data from diode laser infrared spectra and pure rotation spectra of ZnH/ZnD and CdH/CdD available in the literature. The data from all isotopologues were fitted together using a Dunham-type energy level expression for 2Σ+ states, and Born-Oppenheimer breakdown correction parameters were obtained. The equilibrium rotational constants (Be) of 64ZnH, 64ZnD, 114CdH, and 114CdD were determined to be 6.691332(17), 3.402156(7), 5.447074(18), and 2.750761(6) cm−1, respectively, and the associated equilibrium internuclear distances (re) are 1.593478(2), 1.593001(2), 1.760098(3), and 1.759695(2) Å, respectively. Simple reduced mass scaling for the spin-rotation interaction constants of ZnH and CdH fully accounted for their isotopologue dependence, and no Born-Oppenheimer breakdown correction was required for these parameters.  相似文献   

2.
The emission spectrum of TaCl has been recorded at high resolution in the 3000-35 000 cm−1 region using a Fourier transform spectrometer. The bands were observed by microwave excitation of a mixture of TaCl5 vapor and 3.0 Torr of He. Several TaCl bands have also been recorded using the laser ablation/molecular beam source at the University of New Brunswick. A rotational analysis of a number of bands has been obtained and the majority of the stronger bands have been classified into three groups with different lower state spectroscopic constants. The three lower states have been identified as having Ω″ = 0+, Ω″ = 2, and (tentatively) Ω″ = 3. The Ω″ = 0+ and Ω″ = 2 states are very close in energy and one of these two states is the ground state of TaCl.  相似文献   

3.
Rotational and vibrational temperatures of electronically excited BiN radicals in a low-pressure Bix+N/N2*/N2+Ar chemiluminescent flame have been deduced from high-resolution Fourier-transform emission spectra. Bands of three electronic transitions, a3Σ+(a11)→X1Σ+(X0+), b5Σ+(b10+)→X1Σ+(X0+), and b5Σ+(b10+)→a 3Σ+(a11), were analysed to determine the optical temperatures in the a3Σ+(a11) and b5Σ+(b10+) states. The rotational temperatures characterising the rotational populations in the a11, v=0 and 1 states were determined from the a1→X, 0-2, 0-3, 0-4, 1-1, and 1-2 bands. The b1→X, 0-8 and 0-11 bands, and the b1→a1, 0-0 bands served to determine the rotational temperature of the radicals in the b10+, v=0 state. The temperatures derived from the various bands and transitions were well consistent and the mean rotational temperature was determined to be 353±18 K, which is close to the translational temperature of the gas.Vibrational temperatures of the radicals in the a11 and b10+ states were derived from band intensities of the a1→X and from the b1→X as well as b1→a1 systems, respectively. The Franck-Condon factors needed were calculated with RKR potentials deduced from literature values of the rotational and vibrational constants in the three states involved. The a11 vibrational temperature (336±21 K) was close to the rotational temperature, while the b10+ vibrational temperature (438±36 K) differed, likely due to the previously observed perturbation of the b10+ state.  相似文献   

4.
Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Σ+ electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm−1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant (ωe) for MnH was found to be 1546.84518(65) cm−1, the equilibrium rotational constant (Be) is 5.6856789(103) cm−1 and the eqilibrium bond distance (re) was determined to be 1.7308601(47) Å.  相似文献   

5.
The far infrared and infrared spectra of formamide (HCONH2) have been recorded at high resolution (0.00125 cm−1) in the region of 90-1060 cm−1. Over 20,000 transitions from the out-of-plane NH2 wagging motion (n12 = 1 ← 0 fundamental, n12 = 2 ← 0 overtone, n12 = 2 ← 1 difference bands), torsion (n11 = 1 ← 0 bands), and out-of-phase NCO/NH2 bend (n9 = 1 ← 0 bands) have been assigned. Molecular parameters have been obtained for the ground state and the unperturbed n12 = 1 state. The least-squares fit calculations were completed with the microwave data available in the literature. The complicated resonance system between the n12 = 2, n11 = 1, and n9 = 1 states has been investigated carefully. Thus, we have been able to verify almost all resonances (avoided crossing) existing in the region J, K investigated. In the coupled Hamiltonian used for the fit, all Watson’s reduced parameters, including the octic ones and 16 Coriolis coupling parameters were taken into account. The rms deviation obtained from the fit was 0.000247 cm−1.  相似文献   

6.
The emission spectrum of the B2Σ+-X2Σ+ system of CN has been observed at high-resolution using a Fourier transform spectrometer. The rotational structure of a large number of bands involving vibrational levels v = 0-15 of both electronic states has been analyzed, and improved spectroscopic constants have been determined by combining the microwave and infrared measurements from previous studies. Improved spectroscopic constants for vibrational levels up to v″ = 18 in the X2Σ+ state and v′ = 19 in the B2Σ+ state have been determined by combining the measurements of the 16-13, 18-17, 18-18, 19-15, and 19-18 bands of Douglas and Routly [Astrophys. J. Suppl. 1 (1955) 295-318] and 17-14 and 17-16 bands of Ito et al. [J. Chem. Phys. 96 (1992) 4195] with our data. The band constants obtained have been used to estimate equilibrium ground state constants for CN.  相似文献   

7.
Two aluminum mirrors with radii of 203.2 mm and radii of curvature also of 203.2 mm have been used to construct a tunable Fabry-Perót type resonator with Q values of ∼200 at frequencies as low as 500 MHz. The resonator has been incorporated into a pulsed nozzle, Fourier transform, Balle-Flygare spectrometer typically used for recording pure rotational spectra in the microwave region. The resonator design allows the instrument to access the radio frequency region (?3 GHz) of the electromagnetic spectrum. The spectrometer is of use in (i) recording low J transitions of large asymmetric molecules where the spectra are often greatly simplified compared to higher frequency regions; (ii) measuring hyperfine constants for heavy molecules with higher accuracy than may be obtained at higher frequencies where hyperfine structure may not be resolvable; and (iii) provides further synchronicity between laboratory based measurements and radio astronomy in the 30 cm region. The resonators use is illustrated by recording the rotational spectra of bromobenzene and iodobenzene. The lowest ΔJ = +1 transition for iodobenzene has been observed at 1130.5292(10) MHz.  相似文献   

8.
Assignments of the vibrational fundamentals of cis- and trans-1,3,5-hexatriene are reevaluated with new infrared and Raman spectra and with quantum chemical predictions of intensities and anharmonic frequencies. The rotational structure is analyzed in the high-resolution (0.0013-0.0018 cm−1) infrared spectra of three C-type bands of the trans isomer and two C-type bands of the cis isomer. The bands for the trans isomer are at 1010.96 cm−1 (ν14), 900.908 cm−1 (ν16), and 683.46 cm−1 (ν17). Ground state (GS) rotational constants have been fitted to the combined ground state combination differences (GSCDs) for the three bands of the trans isomer. The bands for the cis isomer are at 907.70 cm−1 (ν33) and 587.89 cm−1 (ν35). GS rotational constants have been fitted to the combined GSCDs for the two bands of the cis isomer and compared with those obtained from microwave spectroscopy. Small inertial defects in the GSs confirm that both molecules are planar. Upper state rotational constants were fitted for all five bands.  相似文献   

9.
The emission spectra of CaH and CaD have been recorded at high resolution using a Fourier transform spectrometer and bands belonging to the E2Π-X2Σ+ transition have been measured in the 20 100-20 700 cm−1 region. A rotational analysis of 0-0 and 1-1 bands of both the isotopologues has been carried out. The present measurements have been combined with the previously available pure rotation and vibration-rotation data to provide improved spectroscopic constants for the E2Π state. The constants ΔG(½) = 1199.8867(34) cm−1, Be = 4.345032(49) cm−1, αe = 0.122115(92) cm−1, re = 1.986633(11) Å for CaH, and ΔG(½)=868.7438(46) cm−1, Be = 2.212496(51) cm−1, αe = 0.036509(97) cm−1, re = 1.993396(23) Å for CaD have been determined.  相似文献   

10.
The Fourier transform gas-phase IR spectrum of oxazole, C3H3NO, has been recorded with a resolution of ca. 0.0030 cm−1 in the wavenumber region 600-1400 cm−1. The rotational structures of 10 fundamental bands (four of a-type, three of b-type and three of c-type) have been analysed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from the fits. A number of perturbations have been identified in the bands. From a local crossing observed in ν15 we located the very weak ν14 band at 858.19(1) cm−1. Also ν13 is definitively located at 899.3 cm−1. The three global c-Coriolis interacting dyads ν9/ν10, ν10/ν11, and ν12/ν13 have each been analysed by a model including first and second order Coriolis resonance using ab initio predicted first order Coriolis coupling constants; second order Coriolis interaction parameters are determined. The rotational constants, harmonic and anharmonic frequencies, intensities, and vibration-rotation constants (alphas, ) have been predicted by quantum chemical calculations using a cc-pVTZ basis at the MP2 and B3LYP methodology levels, and compared with the present experimental data. Both the rotational constants and frequencies are marginally closer to experiment from the B3LYP calculations. In order to make more significant comparisons between theory and experiment for the alphas, we take differences between ground and vibronic state values; under these circumstances, the B3LYP definitely have a closer fit to experiment.  相似文献   

11.
The Fourier transform infrared spectrum of gaseous thiophene, C4H4S, has been recorded in the 600-1200 cm−1 spectral region with a resolution of ca. 0.0030 cm−1. Five fundamental bands ν13 (B1, 712.1 cm−1), ν7 (A1; 840.0 cm−1), ν6 (A1; 1036.4 cm−1), ν5 (A1; 1081.5 cm−1) and ν19 (B2; 1084.0 cm−1) have been analysed by the standard Watson model (A-reduction). Ground state rotational and quartic centrifugal distortion constants have been obtained from a simultaneous fit of ground state combination differences from four of these bands and previous microwave transitions. Upper state spectroscopic constants have been obtained for all five bands from single band fits using the Watson model. A strong c-Coriolis resonance perturbs the close lying ν5 and ν19 bands. We have analysed this dyad system by a model including first and second order Coriolis resonance using the theoretically predicted Coriolis coupling constant . From this analysis we locate the previously unobserved ν19 band at 1083.969 cm−1. The rotational constants, ground state quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational constants (α-constants) predicted by quantum chemical calculations using a cc-pVTZ basis with B3LYP methodology, are compared with the present experimental data, where there is generally good agreement. A complete set of anharmonic frequencies and α-constants for all fundamental levels of the molecule is given.  相似文献   

12.
The pure rotational spectrum of CHF2I has been recorded for the first time, in a supersonic expansion in the region 1.7-17 GHz, and at room-temperature in the region 302-318 GHz. The observed transitions span the values of J from 0 up to 67. Precise rotational and centrifugal distortion constants have been determined. Furthermore, the complete iodine nuclear electric quadrupole coupling tensor, in the inertial and principal axes, has been determined. Quantum chemical calculations have been performed to aid with the analysis. Iodine quadrupole mediated perturbations have resulted in the following observations: (i) several transitions having enhanced intensities and (ii) the observation of several forbidden, ΔJ=±2, transitions. Comparisons in electronic structure are made between the series of molecules CH3-nFnX; and X = Cl, Br, I.  相似文献   

13.
The absorption spectrum of deuterated nitrous acid DONO in the region from 2350 to 3000 cm−1 has been recorded at a resolution of 0.003 cm−1 using a Fourier-transform spectrometer. For the first time, 1366 a- and b-type transitions in the υ1 fundamental band of trans-DONO and 741 b-type transitions in the υ1 fundamental band of cis-DONO have been assigned. Rotational and centrifugal distortion constants up to sextic order were determined for the v1 = 1 states of trans- and cis-DONO using non-linear least-squares calculations. Synthetic spectra calculated using the new rovibrational constants obtained for both species reproduce the observed spectra very well. In addition, the infrared transitions of this study were used, together with previously published pure rotational transitions, to determine improved rotational and centrifugal distortion constants of the ground states of trans- and cis-DONO.  相似文献   

14.
The Doppler-limited rotational spectrum of the NH radical in its electronic (X) and vibrational ground state has been measured using the frequency stabilized Cologne side-band spectrometer in the frequency region near 2 THz. The nitrogen 14N nuclear hyperfine patterns have been observed accompanying the resolved fine (JJ″) structure of the N=2←1 rotational transition. The observed peak frequencies were analyzed in detail together with the previously measured hyperfine frequencies of the N=1←0 rotational transition and with combination differences obtained from the high-resolution electronic spectra to derive precise rotational, centrifugal distortion, fine, and hyperfine parameters. In the numerical analysis the essential attention has been paid to partly resolved and unresolved hyperfine structures. The peak positions of the partly or fully overlapped lines were analyzed with the help of a profile simulation with estimated half-widths and calculated relative intensities and in this manner the least square fit of the unresolved and partly resolved lines was significantly improved. The NH radical is an extremely important species in nitrogen chemical reaction networks in the interstellar medium and atmospheric chemistry.  相似文献   

15.
Using the high resolution Fourier transform spectrometer the B2Σ+-X2Σ+ band system of AlO molecule has been recorded. The rotational structure of eighteen bands belonging to B2Σ+-X2Σ+ transition of AlO have been analyzed which led to accurate rotational and vibrational constants of ground and excited states. A few bands, viz. (2, 1), (3, 2), (4, 3), (2, 3), (3, 4), (4, 5), and (5, 6) were analyzed for the first time. Using these constants, the Franck-Condon factors and r-centroids were computed for the bands of B-X, C-X and C-A band systems for the v′ = 0-8; v″ = 0-8 matrix using the method developed by Jarmain and Nicholls. The F-C factors and r-centroids obey the established relationships.  相似文献   

16.
Microwave spectra of ethylsilane and its 19 isotopic species have been measured. A least-squares analysis of the observed frequencies gave rotational constants and three quartic centrifugal distortion constants. The rs structure has been well established from the moments of inertia calculated from the observed rotational constants. The structure has also been obtained from the differences of the observed moments of inertia between the isotopic and normal species by the diagnostic least-squares method. The structure of trans-propylsilane has been established from the reported and newly observed rotational constants for the isotopically substituted species of this molecule by application of the so-called diagnostic least-squares method. The structual parameters of ethylsilane were compared with those of analogous molecules. Special attention was paid to the C-C bond length. The newly obtained bond length is r(C-C)=1.541±0.001 Å. The dipole moment and its direction in the molecule were determined from Stark-effect measurements of several low-J transitions by the usual perturbation method; μa=0.733±0.001 D, μb=0.349±0.003 D, and μtotal=0.812±0.002 D were obtained for the normal species. The angle between the dipole moment and the Si-C bond was 36′ toward the inside of the molecule. These values were compared with those of analogous molecules.  相似文献   

17.
142NdO molecules have been produced by heating 142Nd2O3 to about 2100 K in a vacuum furnace in the presence of argon gas. A ring dye laser operating with DCM dye has been used to excite 142NdO transitions in the 636-666 nm spectral region, and induced fluorescence has been spectroscopically analysed at high resolution with a Fourier transform spectrometer. Contributions from thermal emission have been simultaneously observed. Two new low-lying electronic states have been detected, at energies of about 2708 and 4139 cm−1, designated as [2.7], most probably observed at ν = 1, and [4.1], likely to be (2)6 (observed at ν = 0). The ν = 1 level of the (1)6 state, already known at ν = 0, has been observed for the first time. Most levels pumped by the laser, between 14 000 and 17 400 cm−1, could be identified from earlier work. In addition, by studying in more detail recently obtained fluorescence spectra [J. Mol. Spectrosc. 225 (2004) 132] spectroscopic constants have been improved for a number of states. Finally, from thermal emission spectra, rotational analyses of the 0-0 bands of two new systems, [16.4] − (2)5 and [14.1] − X4, and reanalyses at higher resolution of the 0-0 bands of the systems V, VII, VIII, and X have been carried out. A consistent set of spectroscopic constants of the levels of 142NdO characterized as yet is presented.  相似文献   

18.
The spectrum of B2Σ+-X2Σ+ system of AlO has been recorded on BOMEM DA8 Fourier transform spectrometer at an apodized resolution of 0.05 cm−1. Nineteen bands of the Δv = 1, 0, −1, and −2 sequences of this band system have been analyzed for the rotational structure. Out of which seven bands, viz. 3-2, 4-3, 2-3, 3-4, 4-5, 5-6 and 6-7 have been analyzed for the first time. The rotational lines of these 19 bands along with 20 earlier analyzed bands, a total of 7200 lines, have been fitted in a simultaneous least squares fit. The study has resulted in determining more precise vibrational and rotational constants of the two states. Because of the high resolution employed it became necessary to invoke H0 and H1 coefficients, and a fifth order term to explain the anomalous spin-doubling observed in the v″ = 5, 6 and 7 levels of the X2Σ+ state.  相似文献   

19.
The gas phase infrared emission spectrum of the A3Σ-X3Π electronic transition of SiC has been observed using a high resolution Fourier transform spectrometer. Three bands ν′ − ν″ = 0-1, 0-0, and 1-0 have been observed in the 2770, 3723, and 4578 cm−1 regions, where the 0-1 and 0-0 bands were observed for the first time. The SiC radical was generated by a dc discharge in a flowing mixture of hexamethyl disilane [(CH3)6Si2] and He. A total of 1074 rotational transitions assigned to the 0-1, 0-0, and 1-0 bands have been combined in a simultaneous analysis with previously reported pure rotational data to determine the molecular constants for SiC in the two electronic states. The principal equilibrium molecular constants for the A3Σ state are: Be = 0.6181195(18) cm−1, αe = 0.0051921(20) cm−1, re = 1.8020884(26) Å, and Te = 3773.31(17) cm−1, with one standard deviation given in parentheses. The effect of a perturbation was recognized between the ν = 4 level of X3Π and the ν = 0 level of A3Σ, and the analysis was carried out to determine the interaction parameter between the two states.  相似文献   

20.
Previous work involving the rotational spectrum of 2-aminopyridine was limited to the lower frequencies of 4-40 GHz with very few lines being assigned. This work extends this earlier study. Here we present a much more extensive measurement and assignment of the rotational spectrum of 2-aminopyridine in the frequency range of 75-110 GHz. The observed frequencies have been assigned to the ground (0+ state) and the first excited state in the inversion vibration (0 state). Measurements of these two states have been extended up to J=46. With the newly assigned lines, significantly improved rotational constants and all five centrifugal distortion constants have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号