首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
众所周知,加权法是解等式约束不定最小二乘问题的方法之一.通过探讨极限意义下,双曲MGS算法解对应加权问题的本质,得到一类消去算法.实验表明,该算法以和文献中现有的GHQR算法达到一样的精度,但实际计算量只需要GHQR算法的一半.  相似文献   

2.
3.
LetA be anm × n, m n full rank real matrix andb a real vector of sizem. We give in this paper an explicit formula for the condition number of the linear least squares problem (LLSP) defined by min Ax–b2,x n . Let and be two positive real numbers, we choose the weighted Frobenius norm [A, b] F on the data and the usual Euclidean norm on the solution. A straightforward generalization of the backward error of [9] to this norm is also provided. This allows us to carry out a first order estimate of the forward error for the LLSP with this norm. This enables us to perform a complete backward error analysis in the chosen norms.Finally, some numerical results are presented in the last section on matrices from the collection of [5]. Three algorithms have been tested: the QR factorization, the Normal Equations (NE), the Semi-Normal Equations (SNE).  相似文献   

4.
The ABS class for linear and nonlinear systems has been recently introduced by Abaffy, Broyden, Galantai and Spedicato. Here we consider various ways of applying these algorithms to the determination of the minimal euclidean norm solution of over-determined linear systems in the least squares sense. Extensive numerical experiments show that the proposed algorithms are efficient and that one of them usually gives better accuracy than standard implementations of the QR orthogonalization algorithm with Householder reflections.  相似文献   

5.
We study methods for solving the constrained and weighted least squares problem min x by the preconditioned conjugate gradient (PCG) method. HereW = diag (1, , m ) with 1 m 0, andA T = [T 1 T , ,T k T ] with Toeplitz blocksT l R n × n ,l = 1, ,k. It is well-known that this problem can be solved by solving anaugmented linear 2 × 2 block linear systemM +Ax =b, A T = 0, whereM =W –1. We will use the PCG method with circulant-like preconditioner for solving the system. We show that the spectrum of the preconditioned matrix is clustered around one. When the PCG method is applied to solve the system, we can expect a fast convergence rate.Research supported by HKRGC grants no. CUHK 178/93E and CUHK 316/94E.  相似文献   

6.
A new algorithm for downdating a QR decomposition is presented. We show that, when the columns in the Q factor from the Modified Gram-Schmidt QR decomposition of a matrixX are exactly orthonormal, the Gram-Schmidt downdating algorithm for the QR decomposition ofX is equivalent to downdating the full Householder QR decomposition of the matrixX augmented by ann ×n zero matrix on top. Using this relation, we derive an algorithm that improves the Gram-Schmidt downdating algorithm when the columns in the Q factor are not orthonormal. Numerical test results show that the new algorithm produces far more accurate results than the Gram-Schmidt downdating algorithm for certain ill-conditioned problems.This work was partially supported in part by the National Science Foundation grants CCR-9209726 and CCR-9509085.  相似文献   

7.
Classical condition numbers are normwise: they measure the size of both input perturbations and output errors using some norms. To take into account the relative of each data component, and, in particular, a possible data sparseness, componentwise condition numbers have been increasingly considered. These are mostly of two kinds: mixed and componentwise. In this paper, we give explicit expressions, computable from the data, for the mixed and componentwise condition numbers for the computation of the Moore-Penrose inverse as well as for the computation of solutions and residues of linear least squares problems. In both cases the data matrices have full column (row) rank.

  相似文献   


8.
The perturbation analysis of weighted and constrained rank‐deficient linear least squares is difficult without the use of the augmented system of equations. In this paper a general form of the augmented system is used to get simple perturbation identities and perturbation bounds for the general linear least squares problem both for the full‐rank and rank‐deficient problem. Perturbation identities for the rank‐deficient weighted and constrained case are found as a special case. Interesting perturbation bounds and condition numbers are derived that may be useful when considering the stability of a solution of the rank‐deficient general least squares problem. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, some new properties of the equality constrained and weighted least squares problem (WLSE) min W1/2(Kxg)2 subject to Lx=h are obtained. We derive a perturbation bound based on an unconstrained least squares problem and deduce some equivalent formulae for the projectors of this unconstrained LS problem. We also present a new way to compute the minimum norm solution xWLSE of the WLSE problem by using the QR decomposition of the corresponding matrices and propose an algorithm to compute xWLSE using the QR factorizations. Some numerical examples are provided to compare different methods for solving the WLSE problem.  相似文献   

10.
The linear least squares problem, minxAx − b∥2, is solved by applying a multisplitting (MS) strategy in which the system matrix is decomposed by columns into p blocks. The b and x vectors are partitioned consistently with the matrix decomposition. The global least squares problem is then replaced by a sequence of local least squares problems which can be solved in parallel by MS. In MS the solutions to the local problems are recombined using weighting matrices to pick out the appropriate components of each subproblem solution. A new two-stage algorithm which optimizes the global update each iteration is also given. For this algorithm the updates are obtained by finding the optimal update with respect to the weights of the recombination. For the least squares problem presented, the global update optimization can also be formulated as a least squares problem of dimension p. Theoretical results are presented which prove the convergence of the iterations. Numerical results which detail the iteration behavior relative to subproblem size, convergence criteria and recombination techniques are given. The two-stage MS strategy is shown to be effective for near-separable problems. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
Tensor ring (TR) decomposition has been widely applied as an effective approach in a variety of applications to discover the hidden low-rank patterns in multidimensional and higher-order data. A well-known method for TR decomposition is the alternating least squares (ALS). However, solving the ALS subproblems often suffers from high cost issue, especially for large-scale tensors. In this paper, we provide two strategies to tackle this issue and design three ALS-based algorithms. Specifically, the first strategy is used to simplify the calculation of the coefficient matrices of the normal equations for the ALS subproblems, which takes full advantage of the structure of the coefficient matrices of the subproblems and hence makes the corresponding algorithm perform much better than the regular ALS method in terms of computing time. The second strategy is to stabilize the ALS subproblems by QR factorizations on TR-cores, and hence the corresponding algorithms are more numerically stable compared with our first algorithm. Extensive numerical experiments on synthetic and real data are given to illustrate and confirm the above results. In addition, we also present the complexity analyses of the proposed algorithms.  相似文献   

12.
Quaternion equality constrained least squares problem is an extremely effective tool in studying quantum mechanics and quantum field theory. However, the computation of the quaternion equality constrained least squares problem is extremely complex. In this paper, we first prove that quaternion equality constrained least squares problem is equivalent to weighted quaternion least squares problem when the parameter τ+. Then, for weighted quaternion least squares problem, applying the special structure of real representation of quaternion, we propose real structure–preserving algorithm to obtain the solution of quaternion equality contained least squares problem. At last, we give numerical examples to illustrate the effectiveness of our method.  相似文献   

13.
Condition numbers play an important role in numerical analysis. Classical normise condition numbers are used to measure the size of both input perturbations and output errors. In this paper, we study the weighted normwise relative condition numbers for the weighted Moore-Penrose inverse and the weighted linear least-squares (WLS) problems in the case of the full-column rank matrix. The bounds or formulas for the weighted condition numbers are presented. The obtained results can be viewed as extensions of the earlier works studied by others.  相似文献   

14.
This paper extends prior work by the authors on solving nonlinear least squares unconstrained problems using a factorized quasi-Newton technique. With this aim we use a primal-dual interior-point algorithm for nonconvex nonlinear programming. The factorized quasi-Newton technique is now applied to the Hessian of the Lagrangian function for the transformed problem which is based on a logarithmic barrier formulation. We emphasize the importance of establishing and maintaining symmetric quasi-definiteness of the reduced KKT system. The algorithm then tries to choose a step size that reduces a merit function, and to select a penalty parameter that ensures descent directions along the iterative process. Computational results are included for a variety of least squares constrained problems and preliminary numerical testing indicates that the algorithm is robust and efficient in practice.  相似文献   

15.
We present an algorithm for mixed precision iterative refinement on the constrained and weighted linear least squares problem, the CWLSQ problem. The approximate solution is obtained by solving the CWLSQ problem with the weightedQR factorization [6]. With backward errors for the weightedQR decomposition together with perturbation bounds for the CWLSQ problem we analyze the convergence behaviour of the iterative refinement procedure.In the unweighted case the initial convergence rate of the error of the iteratively refined solution is determined essentially by the condition number. For the CWLSQ problem the initial convergence behaviour is more complicated. The analysis shows that the initial convergence is dependent both on the condition of the problem related to the solution,x, and the vector =Wr, whereW is the weight matrix andr is the residual.We test our algorithm on two examples where the solution is known and the condition number of the problem can be varied. The computational test confirms the theoretical results and verifies that mixed precision iterative refinement, using the system matrix and the weightedQR decomposition, is an effective way of improving an approximate solution to the CWLSQ problem.  相似文献   

16.
应用改进的不完全双曲Gram-Schmidt(IHMGS)方法预处理不定最小二乘问题的共轭梯度法(CGILS)、正交分解法(ILSQR)与广义的最小剩余法(GMRES)等迭代算法来求解大型稀疏的不定最小二乘问题.数值实验表明,IHMGS预处理方法可有效提高相应算法的迭代速度,且当矩阵的条件数比较大时,效果更加显著.  相似文献   

17.
The three-parameter Weibull density function is widely employed as a model in reliability and lifetime studies. Estimation of its parameters has been approached in the literature by various techniques, because a standard maximum likelihood estimate does not exist. In this paper we consider the nonlinear weighted total least squares fitting approach. As a main result, a theorem on the existence of the total least squares estimate is obtained, as well as its generalization in the total lqlq norm (q?1q?1). Some numerical simulations to support the theoretical work are given.  相似文献   

18.
In many linear parameter estimation problems, one can use the mixed least squares–total least squares (MTLS) approach to solve them. This paper is devoted to the perturbation analysis of the MTLS problem. Firstly, we present the normwise, mixed, and componentwise condition numbers of the MTLS problem, and find that the normwise, mixed, and componentwise condition numbers of the TLS problem and the LS problem are unified in the ones of the MTLS problem. In the analysis of the first‐order perturbation, we first provide an upper bound based on the normwise condition number. In order to overcome the problems encountered in calculating the normwise condition number, we give an upper bound for computing more effectively for the MTLS problem. As two estimation techniques for solving the linear parameter estimation problems, interesting connections between their solutions, their residuals for the MTLS problem, and the LS problem are compared. Finally, some numerical experiments are performed to illustrate our results.  相似文献   

19.
Circle fitting by linear and nonlinear least squares   总被引:2,自引:0,他引:2  
The problem of determining the circle of best fit to a set of points in the plane (or the obvious generalization ton-dimensions) is easily formulated as a nonlinear total least-squares problem which may be solved using a Gauss-Newton minimization algorithm. This straight-forward approach is shown to be inefficient and extremely sensitive to the presence of outliers. An alternative formulation allows the problem to be reduced to a linear least squares problem which is trivially solved. The recommended approach is shown to have the added advantage of being much less sensitive to outliers than the nonlinear least squares approach.This work was completed while the author was visiting the Numerical Optimisation Centre, Hatfield Polytechnic and benefitted from the encouragement and helpful suggestions of Dr. M. C. Bartholomew-Biggs and Professor L. C. W. Dixon.  相似文献   

20.
This paper describes a variant of the Gauss-Newton-Hartley algorithm for nonlinear least squares, in which aQR implementation is used to solve the linear least squares problem. We follow Grey's idea of updating variables at intermediate stages of the orthogonalization. This technique, applied in partitions identified with known or suspected spectral lines, appears to be especially suited to the analysis of spectroscopic data. We suggest that this algorithm is an attractive candidate for the optimization role in Ekenberg's interactive computer graphics curve fitting program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号