首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1D nanostructured metal oxides with porous structure have drawn wide attention to being used as high‐performance anode materials for lithium‐ion batteries (LIBs). This study puts forward a simple and scalable strategy to synthesize porous NiO nanorods with the help of a thermal treatment of metal‐organic frameworks in air. The NiO nanorods with an average diameter of approximately 38 nm are composed of nanosized primary particles. When evaluated as anode materials for LIBs, an initial discharge capacity of 743 mA h g?1 is obtained at a current density of 100 mA g?1, and a high reversible capacity is still maintained as high as 700 mA h g?1 even after 60 charge–discharge cycles. The excellent electrochemical performance is mainly ascribed to the 1D porous structure.  相似文献   

2.
Lithium‐ion batteries (LIBs) have been extensively investigated due to the ever‐increasing demand for new electrode materials for electric vehicles (EVs) and clean energy storage. A wide variety of nano/microstructured LIBs electrode materials are hitherto created via self‐assembly, ranging from 0D nanospheres; 1D nanorods, nanowires, or nanobelts; and 2D nanofilms to 3D nanorod array films. Nanoparticles can be utilized to build up integrated architectures. Understanding of nanoparticles’ self‐assembly may provide information about their organization into large aggregates through low‐cost, high‐efficiency, and large‐scale synthesis. Here, the focus is on the recent advances in preparing hierarchically nano/microstructured electrode materials via self‐assembly. The hierarchical electrode materials are assembled from single component, binary to multicomponent building blocks via different driving forces including diverse chemical bonds and non‐covalent interactions. It is expected that nanoparticle engineering by high‐efficient self‐assembly process will impact the development of high‐performance electrode materials and high‐performance LIBs or other rechargeable batteries.  相似文献   

3.
Si nanoparticle (Si‐NP) composite anode with high rate and long cycle life is an attractive anode material for lithium‐ion battery (LIB) in hybrid electric vehicle (HEV)/pure electric vehicle (PEV). In this work, a carbon nanotube (CNT)/reduced graphene oxide (rGO)/Si nanoparticle composite with alternated structure as Li‐ion battery anode is prepared. In this structure, rGO completely wraps the entire Si/CNT networks by different layers and CNT networks provide fast electron transport pathways with reduced solid‐state diffusion, so that the stable solid‐electrolyte interphase layer can form on the whole surface of the matrix instead of on single Si nanoparticle, which ensure the high cycle stability to achieve the excellent cycle performance. As a result, the CNT/rGO/Si‐NP anode exhibits high performances with long cycle life (≈455 mAh g?1 at 15 A g?1 after 2000 cycles), high specific charge capacity (≈2250 mAh g?1 at 0.2 A g?1, ≈650 mAh g?1 at 15 A g?1), and fast charge/discharge rates (up to 16 A g?1). This nanostructure anode with facile and low‐cost synthesis method, as well as excellent electrochemical performances, makes it attractive for the long life cycles at high rate of the next generation LIB applications in HEV/PEV.  相似文献   

4.
With the increasing energy demands for electronic devices and electrical vehicles, anode materials for lithium‐ion batteries with high specific capacity, good cyclic and rate performance become one of the focal areas of research. A class of them is the copper‐based nanomaterials that have thermal and chemical stability, high theoretical specific capacity, low price and environment friendliness. Now this kind of nanomaterials has been recognized as one of the critical materials for lithium‐ion batteries due to the predicted future market growth. Current status of different copper‐based materials which produced already are discussed. In this review, comprehensive summaries and evaluations are given in synthesis strategies, tailored material properties and different electrochemical performance. Recent progress of general copper‐based nanomaterials for lithium‐ion batteries is carefully presented.  相似文献   

5.
As one promising anode material with high theoretical capacity, metallic tin has attracted much research interest in the field of lithium‐ion batteries. Here, two types of tin/carbon (Sn@C) core–shell nanostructures with inner buffering voids are fabricated from SnO2 hollow nanospheres via a facile chemical vapor deposition (CVD) method. The crystallinity and surface topography of SnO2 hollow nanospheres are found to affect the morphology of resultant Sn@C materials. Sn@C yolk–shell nanospheres and core–sheath nanowires are obtained from the as‐prepared SnO2 and high‐temperature annealed SnO2 nanospheres, respectively. The unique Sn@C nanostructures can mitigate the agglomeration/pulverization of Sn nanoparticles and electrical disconnection from the current collector caused by the large volume change during the lithium alloying/dealloying process. Both Sn@C yolk–shell and core–sheath nanostructures show stable cycling performance up to 500 cycles with specific capacities of ca. 430 and 520 mA h g?1, respectively.  相似文献   

6.
Nanostructured ternary/mixed transition metal oxides have attracted considerable attentions because of their high‐capacity and high‐rate capability in the electrochemical energy storage applications, but facile large‐scale fabrication with desired nanostructures still remains a great challenge. To overcome this, a facile synthesis of porous NiCoO2 nanofibers composed of interconnected nanoparticles via an electrospinning–annealing strategy is reported herein. When examined as anode materials for lithium‐ion batteries, the as‐prepared porous NiCoO2 nanofibers demonstrate superior lithium storage properties, delivering a high discharge capacity of 945 mA h g?1 after 140 cycles at 100 mA g?1 and a high rate capacity of 523 mA h g?1 at 2000 mA g?1. This excellent electrochemical performance could be ascribed to the novel hierarchical nanoparticle‐nanofiber assembly structure, which can not only buffer the volumetric changes upon lithiation/delithiation processes but also provide enlarged surface sites for lithium storage and facilitate the charge/electrolyte diffusion. Notably, a facile synthetic strategy for fabrication of ternary/mixed metal oxides with 1D nanostructures, which is promising for energy‐related applications, is provided.  相似文献   

7.
Manganese oxide is a highly promising anode material of lithium‐ion batteries (LIBs) for its low insertion voltage and high reversible capacity. Porous MnO microspheres are prepared by a facile method in this work. As an anode material of LIB, it can deliver a high reversible capacity up to 1234.2 mA h g?1 after 300 cycles at 0.2 C, and a capacity of 690.0 mA h g?1 in the 500th cycle at 2 C. The capacity increase with cycling can be attributed to the growth of reversible polymer/gel‐like film, and the better cycling stability and the superior rate performance can be attributed to the featured structure of the microspheres composed of nanoparticles with a short transport path for lithium ions, a large specific surface, and material/electrolyte contact area. The results suggest that the porous MnO microspheres can function as a promising anode material for high‐performance LIBs.  相似文献   

8.
Graphene‐based phosphorus‐doped carbon (GPC) is prepared through a facile and scalable thermal annealing method by triphenylphosphine and graphite oxide as precursor. The P atoms are successfully doped into few layer graphene with two forms of P–O and P–C bands. The GPC used as anode material for Na‐ion batteries delivers a high charge capacity 284.8 mAh g?1 at a current density of 50 mA g?1 after 60 cycles. Superior cycling performance is also shown at high charge?discharge rate: a stable charge capacity 145.6 mAh g?1 can be achieved at the current density of 500 mA g?1 after 600 cycles. The result demonstrates that the GPC electrode exhibits good electrochemical performance (higher reversible charge capacity, super rate capability, and long‐term cycling stability). The excellent electrochemical performance originated from the large interlayer distance, large amount of defects, vacancies, and active site caused by P atoms doping. The relationship of P atoms doping amount with the Na storage properties is also discussed. This superior sodium storage performance of GPC makes it as a promising alternative anode material for sodium‐ion batteries.  相似文献   

9.
Silica (SiO2) is regarded as one of the most promising anode materials for lithium‐ion batteries due to the high theoretical specific capacity and extremely low cost. However, the low intrinsic electrical conductivity and the big volume change during charge/discharge cycles result in a poor electrochemical performance. Here, hollow silica spheres embedded in porous carbon (HSS–C) composites are synthesized and investigated as an anode material for lithium‐ion batteries. The HSS–C composites demonstrate a high specific capacity of about 910 mA h g?1 at a rate of 200 mA g?1 after 150 cycles and exhibit good rate capability. The porous carbon with a large surface area and void space filled both inside and outside of the hollow silica spheres acts as an excellent conductive layer to enhance the overall conductivity of the electrode, shortens the diffusion path length for the transport of lithium ions, and also buffers the volume change accompanied with lithium‐ion insertion/extraction processes.  相似文献   

10.
Vanadium pentoxide (V2O5) is a promising cathode material for high‐performance lithium‐ion batteries (LIBs) because of its high specific capacity, low cost, and abundant source. However, the practical application of V2O5 in commercial LIBs is still hindered by its intrinsic low ionic diffusion coefficient and moderate electrical conductivity. In the past decades, progressive accomplishments have been achieved that rely on the synthesis of nanostructured materials, carbon hybridization, and cation doping. Generally, fabrication of nanostructured electrode materials can effectively decrease the ion and electron transport distances while carbon hybridization and cation doping are able to significantly increase the electrical conductivity and diffusion coefficient of Li+. Implementation of these strategies addresses the problems that are related to the ionic and electronic conductivity of V2O5. Accordingly, the electrochemical performances of V2O5‐based cathodes are significantly improved in terms of discharge capacity, cycling stability, and rate capability. In this review, the recent advances in the synthesis of V2O5‐based cathode materials are highlighted that focus on the fabrication of nanostructured materials, carbon hybridization, and cation doping.  相似文献   

11.
Porous electrode materials with large specific surface area, relatively short diffusion path, and higher electrical conductivity, which display both better rate capabilities and good cycle lives, have huge benefits for practical applications in lithium‐ion batteries. Here, uniform porous NiCo2O4 nanorods (PNNs) with pore‐size distribution in the range of 10–30 nm and lengths of up to several micrometers are synthesized through a convenient oxalate co‐precipitation method followed by a calcining process. The PNN electrode exhibits high reversible capacity and outstanding cycling stability (after 150 cycles still maintain about 650 mA h g?1 at a current density of 100 mA g?1), as well as high Coulombic efficiency (>98%). Moreover, the PNNs also exhibit an excellent rate performance, and deliver a stable reversible specific capacity of 450 mA h g?1 even at 2000 mA g?1. These results demonstrate that the PNNs are promising anode materials for high‐performance Li‐ion batteries.  相似文献   

12.
13.
A flexible strategy is exploited to insert Zn nanoparticles into the pores of highly stable 3D network of carbon ultrathin films (P‐Zn/C) that can effectively localize the postformed Zn nanoparticles, thereby solving the problem of structural degradation, and thus achieve improved anode performance. A maximum capacity of 657.3 mA h g−1 at a current density of 200 mA g−1 after 50 cycles is achieved for P‐Zn/C. Even at a high current density of 2 A g−1, a capacity of 653 mA h g−1 is maintained after 1000 cycles, indicating that it could be a promising anode for lithium ion batteries. By comparing the capacitive and diffusion contribution qualitatively and quantitatively, the result reveals that the enhanced electrochemical performance mainly originates from the pseudocapacitance storage mechanism.  相似文献   

14.
15.
Growing market demand for portable energy storage has triggered significant research on high‐capacity lithium‐ion (Li‐ion) battery anodes. Various elements have been utilized in innovative structures to enable these anodes, which can potentially increase the energy density and decrease the cost of Li‐ion batteries. In this review, electrode and material parameters are considered in anode fabrication. The periodic table is then used to explore how the choice of anode material affects rate performance, cycle stability, Li‐ion insertion/extraction potentials, voltage hysteresis, volumetric and specific capacities, and other critical parameters. Silicon (Si), germanium (Ge), and tin (Sn) anodes receive more attention in literature and in this review, but other elements, such as antimony (Sb), lead (Pb), magnesium (Mg), aluminum (Al), gallium (Ga), phosphorus (P), arsenic (As), bismuth (Bi), and zinc (Zn) are also discussed. Among conversion anodes focus is placed on oxides, nitrides, phosphides, and hydrides. Nanostructured carbon (C) receives separate consideration. Issues in high‐ capacity research, such as volume change, insufficient coulombic efficiency, and solid electrolyte interphase (SEI) layer stability are elucidated. Finally, advanced carbon composites utilizing carbon nanotubes (CNT), graphene, and size preserving external shells are discussed, including high mass loading (thick) electrodes and electrodes capable of providing load‐bearing properties.  相似文献   

16.
A new strategy is reported to fabricate Cu@MxOy (M = Cu, Mn, Co, Fe) nanocable arrays using five‐fold twinned copper (Cu) nanowire (NW) arrays as starting materials, to promote both the cycling stability and high rate capability of MxOy as anodes for LIBs. Conductive Cu NW arrays were synthesized on Cu foil via chemical vapor deposition (CVD), followed by the oxidation of their surface so as to form Cu@Cu2O nanocable arrays. The thickness of the active material (Cu2O) on the Cu NW arrays can be tuned from 20 nm to 160 nm by simply controlling the oxidation time. Based on this accurate control, the optimal coating thickness of Cu2O was determined to be around 35 nm. Additionally, the Cu2O active material shell can be easily transformed to other metal oxides with even higher specific capacities via a “coordinating etching” strategy based on Pearson's principle, resulting in Cu@MxOy nanocable arrays (M = Mn, Co, Fe). When applied as electrodes for LIBs, these 3D electrodes show long cycle lives (over 300 cycles) and high rate capabilities.  相似文献   

17.
18.
2D MoS2 has a significant capacity decay due to the stack of layers during the charge/discharge process, which has seriously restricted its practical application in lithium‐ion batteries. Herein, a simple preform‐in situ process to fabricate vertically grown MoS2 nanosheets with 8–12 layers anchored on reduced graphene oxide (rGO) flexible supports is presented. As an anode in MoS2/rGO//Li half‐cell, the MoS2/rGO electrode shows a high initial coulomb efficiency (84.1%) and excellent capacity retention (84.7% after 100 cycles) at a current density of 100 mA g?1. Moreover, the MoS2/rGO electrode keeps capacity as high as 786 mAh g?1 after 1000 cycles with minimum degradation of 54 µAh g?1 cycle?1 after being further tested at a high current density of 1000 mA g?1. When evaluated in a MoS2/rGO//LiCoO2 full‐cell, it delivers an initial charge capacity of 153 mAh g?1 at a current density of 100 mA g?1 and achieves an energy density of 208 Wh kg?1 under the power density of 220 W kg?1.  相似文献   

19.
Niobium nitride/nitrogen‐doped graphene nanosheet hybrid materials are prepared by a simple hydrothermal method combined with ammonia annealing and their electrochemical performance is reported. It is found by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the as‐obtained niobium nitride nanoparticles are about 10–15 nm in size and homogeneously anchored on graphene. A non‐aqueous lithium‐ion capacitor is fabricated with an optimized mass loading of activated carbon cathode and the niobium nitride/nitrogen‐doped graphene nanosheet anode, which delivers high energy densities of 122.7–98.4 W h kg?1 at power densities of 100–2000 W kg?1, respectively. The capacity retention is 81.7% after 1000 cycles at a current density of 500 mA g?1. The high energy and power of this hybrid capacitor bridges the gap between conventional high specific energy lithium‐ion batteries and high specific power electrochemical capacitors, which holds great potential applications in energy storage for hybrid electric vehicles.  相似文献   

20.
The capacity loading per unit area is of importance as specific capacity while evaluating the lithium‐ion battery anode. However, the low conductivity of several advanced anode materials (such as molybdenum sulfide, MoS2) prohibits the wide application of materials. Nanostructural engineering becomes a key to overcome the obstacles. A one‐step in situ conversion reaction is employed to synthesize molybdenum oxide (MoO2)–MoS2 core–shell nanoarchitectures (MoO2@MoS2) by partially sulfiding MoO2 into MoS2 using sulfur. The MoO2@MoS2 displays a 3D architecture constructed by hundreds of MoS2 ultrathin sheets with several layers arranged and fixed to an MoO2 particle vertically with the size in the range of 200–500 nm. MoO2 acts as the molybdenum source for the synthesis of MoS2, as well as the conductive substrate. The designed 3D architectures with empty space between MoS2 layers can prevent the damage originated from volume change of MoS2 undergoing charge/discharge process. The lithium storage capacities of the MoO2@MoS2 3D architectures are higher and the stability has been significantly improved compared to pure MoS2. 4 mAh cm?2 capacity loading of MoO2@MoS2 has been achieved with a specific capacity of more than 1000 mAh g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号