首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report fabrication of silver nanoparticles (Ag NPs) by laser ablation technique in different concentrations of aqueous chitosan solution. The ablation process of silver plate was carried out by using a nanosecond Q-switched Nd:YAG pulsed laser and the characterization of Ag NPs was done by Transmission electron microscopy, UV-Vis spectroscopy, and X-ray diffraction. UV-visible plasmon absorption spectra revealed that the formation efficiency as well as the stability of nanoparticles was increased by addition of chitosan. On the other hand, the size decrement of nanoparticles was more remarkable in the higher chitosan concentration.  相似文献   

2.
A study of indium nanoparticles prepared by two laser ablation techniques is reported. The suspensions of indium nanoparticles were prepared using the laser ablation of bulk indium in liquids. The prepared suspensions of indium nanoparticles were analyzed by the X-ray fluorescence spectroscopy and absorption spectroscopy. The position of the surface plasmon resonance of In-containing suspensions (350 nm) was consistent with the estimations taking into account the average size of In nanoparticles (43 nm) measured using the X-ray fluorescence spectroscopy. The nonlinear optical parameters of indium nanoparticles-containing liquids were studied by the z-scan technique using a picosecond Nd:YAG laser. We compare the laser ablation in liquids with the laser ablation of indium in vacuum at the tight and weak focusing conditions of a Ti:sapphire laser and analyze the 60 nm indium nanoparticles synthesized in the latter case. PACS 42.65.An; 42.65.Hw; 42.65.Jx; 61.46.Df; 78.67.Bf  相似文献   

3.
Nanoparticles (NPs) and surface nanostructures (NS) are produced via laser ablation of a bulk gold target in liquid using second harmonics of 10 ps Nd:YAG laser (532 nm) with repetition rate of 50 kHz. The morphology and plasmon photoluminescence (PL) properties of obtained nanoscale objects are described. Transmission electron microscopy and field emission scanning electron microscopy are used for morphology characterization of NPs and NS, respectively. Plasmon PL of both gold NPs and NS is experimentally studied using the third harmonics of the Nd:YAG picosecond laser (355 nm) as a pump. The wavelength of intensity maximum of PL of Au NPs colloidal solution virtually coincides with the position of Au NPs plasmon absorption peak. Real-time excitation of both plasmon PL and Raman scattering of surrounding liquid by picosecond laser pulses in aqueous colloidal solution is also investigated. The efficient cross section of plasmon PL of Au NPs colloid is evaluated using Raman scattering of water as a comparative parameter. The results are in good agreement with values obtained in previous works. Plasmon PL from self-organized NS on the Au surface produced via laser ablation is observed for the first time. Its spectrum is compared to PL spectra of both aqueous colloidal solutions of NPs and of NPs deposited on a Si wafer. The obtained experimental data are discussed with reference to the band structure of bulk Au.  相似文献   

4.
Silica core–silver shell, silver nanoshells (NSs), have been synthesized by an innovative laser-based approach. The NSs’ nucleation and growth progressed upon the pulse strikes of a copper vapor laser on a colloidal solution containing silver and silica nanoparticles (NPs). The silver NPs were separately synthesized by ablation of a silver target in deionized water by a 1064 nm Q-switched Nd:YAG laser. The dependence of silver NSs’ growth on the laser exposure time has been systematically studied by UV–VIS absorption spectroscopy technique. Transmission electron microscopy was exploited as well to visually confirm the NSs’ evolution through the process.  相似文献   

5.
Recent progresses in plasmon‐induced hot electrons open up the possibility to achieve photon harvesting beyond the fundamental limit imposed by band‐to‐band transitions in semiconductors. To obtain high efficiency, both the optical absorption and electron emission/collection are crucial factors that need to be addressed in the design of hot electron devices. Here, we demonstrate a photoresponse as high as 3.3mA/W at 1500nm on a silicon platform by plasmonic absorber (PA) and omni‐Schottky junction integrated photodetector, reverse biased at 5V and illuminated with 10mW. The PA fabricated on silicon consists of a monolayer of random Au nanoparticles (NPs), a wide‐band gap semiconductor (TiO2) and an optically thick Au electrode, resulting in broadband near‐infrared (NIR) absorption and efficient hot‐electron transfer via an all‐around Schottky emission path. Meanwhile, time and spectral‐resolved photoresponse measurements reveal that embedded NPs with superior absorption resembling plasmonic local heating sources can transfer their energy to electricity via the photothermal mechanism, which until now has not been adequately assessed or rigorously differentiated from the photoelectric process in plasmon‐mediated photon harvesting nano‐systems.  相似文献   

6.
We prepared copper nanoparticles by ns laser ablation in pure water and in aqueous solutions of 1,10-phenanthroline at 1064 nm and 532 nm wavelengths. Although not fully impairing progressive oxidation, ligand molecules prevent the colloids to collapse. UV–vis absorption spectroscopy showed that particle production is more efficient at 1064 nm, while transmission electron microscopy gave evidence that 532-nm pulses cause photofragmentation of the structures, resulting in reduced particle size. Furthermore, from Raman and fluorescence tests we found that colloids obtained at 1064 nm show better Surface Enhanced Raman activity, while colloids obtained at 532 nm exhibit a more intense fluorescence emission.  相似文献   

7.
Near-infrared (NIR) fluorescence imaging is an important imaging technology in deep-tissue biomedical imaging and related researches, due to the low absorption and scattering of NIR excitation and/or emission in biological tissues. Laser scanning confocal microscopy (LSCM) plays a significant role in the family of fluorescence microscopy. Due to the introduction of pinhole, it can provide images with optical sectioning, high signal-to-noise ratio and better spatial resolution. In this study, in order to combine the advantages of these two techniques, we set up a fluorescence microscopic imaging system, which can be named as NIR-LSCM. The system was based on a commercially available confocal microscope, utilizing a NIR laser for excitation and a NIR sensitive detector for signal collection. In addition, NIR fluorescent nanoparticles (NPs) were prepared, and utilized for fluorescence imaging of the ear and brain of living mice based on the NIR-LSCM system. The structure of blood vessels at certain depth could be visualized clearly, because of the high-resolution and large-depth imaging capability of NIR-LSCM.  相似文献   

8.
Highly fluorescent organic nanoparticles with size of about 300 nm were prepared by nanosecond laser ablation of micrometer-sized powder of dendronized perylenediimide dispersed in water. The nanoparticle colloidal solution provided a fluorescence quantum yield of 0.58. The absorption and emission spectral studies demonstrated that the bulky dendron groups at the side bays of perylenediimide chromophore efficiently suppress the interchromophoric interactions in the nanoparticles. Fluorescence measurement on several single nanoparticles underlines that the prepared nanoparticles are bright and photo-stable enough to be a useful probe for single particle fluorescence investigation.  相似文献   

9.
10.
Laser ablation (LA) of a Au foil immersed in chloroform and/or in diluted 5,10,15,20-tetrakis-4-pyridylporphine (TPyP) chloroform solutions was carried out using 1064 nm nanosecond laser pulses. The products were characterized by UV-visible-NIR optical extinction and IR absorption measurements, Raman spectroscopy and transmission electron microscopy (TEM). They were found to be strongly influenced by the convergence of the incident laser beam and delivered energy per pulse. Our results show that with highly focused laser beam chloroform underwent photochemical reactions and no nanoparticles with observable surface plasmon extinction (SPE) band were formed whereas at particular focusing conditions Au nanoparticles with the SPE band typical for Au organosols were created. Au organosols in pure chloroform showed a limited stability, the SPE band disappeared in a few hours after the preparation. When a small amount of TPyP was present in the course of LA both the efficiency of Au nanoparticles formation and the stability of the resulting organosols were improved. A possible mechanism of LA of the Au target in chloroform and in diluted TPyP chloroform solutions is discussed.  相似文献   

11.
Synthesis of titania (TiO2) nanoparticles (NPs) has been performed with pulsed laser ablation (PLA) approach by irradiating a 1064 nm Nd:YAG laser pulses on the titanium target immersed in pure water. A systematic characterization on the products, synthesized in different laser pulse energies, illustrated the conspicuous dependence of crystalline phase and size distribution of the NPs on this parameter. Emission spectroscopy of the induced plasma was exploited to justify the formation of titania NPs through the synthesis process, as well as the emergence of rutile phase beside the anatase by increasing the laser pulse energies. In addition, UV-vis optical absorption and Raman spectroscopy, associated with X-ray diffraction (XRD) were employed to quantitatively determine the crystalline phases of the products. Morphological observations by means of transmission electron microscopy (TEM), demonstrating the spherical shape of the synthesized NPs, was utilized to investigate the variation of particle size distribution with the laser pulse energy.  相似文献   

12.
Pulsed laser ablation of Ag and Au targets, immersed in double-distilled water is used to synthesize metallic nanoparticles (NPs). The targets are irradiated for 20 min by laser pulses at different wavelengths—the fundamental and the second harmonic (SHG) (λ = 1064 and 532 nm, respectively) of a Nd:YAG laser system. The ablation process is performed at a repetition rate of 10 Hz and with pulse duration of 15 ns. Two boundary values of the laser fluence for each wavelength under the experimental conditions chosen were used—it varied from several J/cm2 to tens of J/cm2. Only as-prepared samples were measured not later than two hours after fabrication. The NPs shape and size distribution were evaluated from transmission electron microscopy (TEM) images. The suspensions obtained were investigated by optical transmission spectroscopy in the near UV and in the visible region in order to get information about these parameters. Spherical shape of the NPs at the low laser fluence and appearance of aggregation and building of nanowires at the SHG and high laser fluence was seen. Dependence of the mean particle size at the SHG on the laser fluence was established. Comments on the results obtained have been also presented.  相似文献   

13.
In this work, silver nanoparticles are synthesized using a simple and sensitive method by using double-stranded DNA (dsDNA-Ag NPs) as a template. The prepared dsDNA-Ag NPs are characterized by fluorescence spectroscopy analysis, X-ray photoelectron spectroscopy analysis, and transmission electron microscopy analysis. The excitation wavelength of the prepared silver nanoparticles is 295 nm, the emission wavelength is 377 nm, the average particle size is 11.2 nm, and the dispersion is uniform with pleasurable stability. The nanomaterials are used as fluorescent probes to detect glutathione (GSH). After adding glutathione to the dsDNA-Ag NPs fluorescent probes, the fluorescence of dsDNA-Ag NPs is burst due to electron transfer and S Ag bond generation, and the linear range of detection concentration is 0–90 mm with a detection limit of 0.37 mm .  相似文献   

14.
Poly(tetrafluoroethylene) (PTFE) does not exhibit excimer laser etching behavior at conventional, e.g., single photon absorption, emissions of 193, 248, and 308 nm, due to the lack of polymer/photon interaction. This is not surprising since the electronic transitions available to the PTFE molecule are high energy and thus require short wavelength the radiation However, by incorporating a small quantity of material into the non-absorbing fluoropolymer matrix that interacts strongly with the emitted laser energy, e.g., a dopant, successful ablation, both in terms of etch rate and structuring quality occurs. Specifically, excimer laser ablation of PTFE films containing 5, 10, and 15% polyimide (wt/wt) as a dopant was achieved at 308 nm in a fluence range of 1 to 12 J/cm2. Ablation rates for the materials increased with increasing fluence and, at the polyimide levels investigated, varied inversely with dopant concentration. All compositions exhibited excellent structuring quality.  相似文献   

15.
Absorption spectra of formaldehyde molecule in the gas phase have been recorded using photoacoustic (PA) technique with pulsed dye laser at various power levels. The spectral profiles at higher power levels are found to be different from that obtained at lower laser powers. Two photon absorption (TPA) is found to be responsible for the photoacoustic signal at higher laser power while the absorption at lower laser power level is attributed to one photon absorption (OPA) process. Probable assignments for the different transitions are given in this paper.  相似文献   

16.
Understanding the colloidal stability of nanoparticles (NPs) plays a key role in phenomenological interpretation of toxicological experiments, particularly if single NPs or their aggregates or agglomerates determine the dominant experimental result. This report examines a variety of instrumental techniques for surveying the colloidal stability of aqueous suspensions of silver nanoparticles (AgNPs), including atomic force microscopy, dynamic light scattering, and colorimetry. It was found that colorimetry can adequately determine the concentration of single AgNPs that remained in solution if morphological information about agglomerates is not required. The colloidal stability of AgNPs with various surface capping agents and in various solvents ranging from cell culture media to different electrolytes of several concentrations, and in different pH conditions was determined. It was found that biocompatible bulky capping agents, such as bovine serum albumin or starch, that provided steric colloidal stabilization, as opposed to purely electrostatic stabilization such as with citrate AgNPs, provided better retention of single AgNPs in solution over a variety of conditions for up to 64 h of observation.  相似文献   

17.
Silver nanoparticles (Ag NPs) were prepared by different chemical methods possessing different sizes 3 ± 2, 8 ± 2, and 20 ± 5 nm. The influence the size of Ag NPs was demonstrated by the absorption and fluorescence spectra, the maximum absorption of Ag NPs increases as the particle size increases. When Ag NPs irradiated with 308 nm excimer laser; the maximum absorption and the full width at half maximum decreased as the number of pulses increased up to 100,000 pulse; due to the size reduction. The fluorescence spectra of Ag NPs and irradiated Ag NPs with 308 nm excimer laser were recorded after excitation at 441.5 nm He-Cd laser, showing a red shift increasing as the particle size is increased.  相似文献   

18.
Inorganic antibacterial agents such as metal nanoparticles (NPs) are very important in biomedical and pharmaceutical areas. There are many methods of synthesizing these NPs, but all of them have their own disadvantages. In this study, ultrasonic‐assisted spark discharge is employed to produce colloidal silver (Ag) and zinc oxide (ZnO) NPs which are stable without using any stabilizers or surfactants. Different tests such as X‐ray diffraction, field emission scanning electron microscopy, and ultraviolet–visible absorption spectroscopy are used for the characterization of the quantity and quality of these NPs, and their antibacterial activity is evaluated by the disk diffusion method and determination of the minimum inhibitory concentrations against Escherichia coli . The results show that the overall antibacterial activity of Ag NPs is higher than that of ZnO NPs.  相似文献   

19.
Bioprobes based on fluorescent ruby nanoparticles, which are suitable for ultrasensitive imaging, are reported. A stable aqueous/buffer colloid, permitting facile conjugation to proteins, is produced by femtosecond laser ablation of ruby and the nanoparticles (mean size 17 nm) are photostable, with long lifetime (1–4 ms) 694 nm emission. With time‐gating complete (>20 dB) suppression of cell autofluorescence and suppression of exogenous fluorophores is observed. Nanoparticles are imaged in as‐grown cells and those immunolabeled with quantum dots. Immunoassay binding to target biomolecules is also demonstrated.  相似文献   

20.
Nanoparticles of the post-transition metals, In, Sn, Pb, and Bi, and of the metalloid Sb were produced by laser ablation synthesis in solution (LASiS) and tested for localized surface plasmon resonances (LSPR) and surface-enhanced Raman scattering (SERS). The nanoparticles were characterized by UV-Vis optical absorption, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Several organic and biological molecules were tested, and SERS activity was demonstrated for all tested nanoparticles and molecules. The Raman enhancement factor for each nanoparticle class and molecule was experimentally determined. The search for new plasmonic nanostructures is important mainly for life sciences-related applications and this study expands the range of SERS active systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号