首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Monolayers of oligo(phenylene-ethynylene) (OPE) molecules have exhibited promise in molecular electronic test structures. This paper discusses films formed from a novel molecule within this class, 2-fluoro-4-phenylethynyl-1-[(4-acetylthio)phenylethynyl]benzene (F-OPE). The conditions of self-assembled monolayer (SAM) formation were systematically altered to fabricate reproducible high-quality molecular monolayers from the acetate-protected F-OPE molecule. Detailed characterization of the F-OPE monolayers was performed by using an array of surface probes, including reflection absorbance infrared spectroscopy (RAIRS), contact angle (CA) measurements, spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and atomic force microscopy (AFM). XPS and RAIRS established that the SAM formed without removal of the F substituent and without oxidation of the thiol. The monolayer thickness, determined from SE and AFM based nanolithography, was consistent with the formation of a densely packed monolayer. The valence electronic structure of the SAM was consistent with an aromatic structure shifted by the electron-withdrawing fluorine substituent and intermolecular coupling within an oriented array of molecules.  相似文献   

2.
We have investigated the reaction of tetrakis(dimethylamido)titanium, Ti[N(CH(3))(2)](4), with N-isopropyl-N-[4-(thien-3-ylethynyl) phenyl] amine and N-isopropyl-N-(4-{[4-(thien-3-ylethynyl) phenyl]ethynyl}phenyl) amine self-assembled monolayers (SAMs), on polycrystalline Au substrates. The structure of the SAMs themselves has also been investigated. Both molecules form SAMs on polycrystalline Au bound by the thiophene group. The longer-molecular-backbone molecule forms a denser SAM, with molecules characterized by a smaller tilt angle. X-ray photoelectron spectroscopy (XPS) and angle-resolved XPS have been employed to examine the kinetics of adsorption, the spatial extent of reaction, and the stoichiometry of reaction. For both the SAMs, adsorption is described well by first-order Langmuirian kinetics, and adsorption is self-limiting from T(s) = -50 to 30 degrees C. The use of angle-resolved XPS clearly demonstrates that the Ti[N(CH(3))(2)](4) reacts exclusively with the isopropylamine end group via ligand exchange, and there is no penetration of the SAM, followed by reaction at the SAM-Au interface. Moreover, the SAM molecules remain bound to the Au surface via their thiopene functionalites. From XPS, we have found that, in both cases, approximately one Ti[N(CH(3))(2)](4) is adsorbed per two SAM molecules.  相似文献   

3.
In this work, we demonstrate the strong resistance of oligo(phosphorylcholine) (OPC) self-assembled monolayers (SAMs) to protein adsorption and cell adhesion. OPC SAMs were characterized using X-ray photoelectron spectroscopy (XPS), and protein adsorption was measured using a surface plasmon resonance (SPR) sensor. Results are compared with those of phosphorylcholine (PC) SAMs. Despite the existence of negative charge on OPC SAMs and the simple synthesis procedure of OPC thiols, OPC SAMs resist protein adsorption as effectively as or better than PC SAMs formed from highly purified PC thiols. The ease of their preparation and the effectiveness of their function make OPC SAMs an attractive alternative for creating nonfouling surfaces.  相似文献   

4.
In-situ spectroscopic ellipsometry (SE) was utilized to examine the formation of the self-assembled monolayers (SAMs) of the water-soluble oligo(ethylene oxide) [OEO] disulfide [S(CH(2)CH(2)O)(6)CH(3)](2) {[S(EO)(6)](2)} and two analogous thiols - HS(CH(2)CH(2)O)(6)CH(3) {(EO)(6)} and HS(CH(2))(3)O(CH(2)CH(2)O)(5)CH(3) {C(3)(EO)(5)} - on Au from aqueous solutions. Kinetic data for all compounds follow simple Langmuirian models with the disulfide reaching a self-limiting final state (d=1.2nm) more rapidly than the full coverage final states of the thiol analogs (d=2.0nm). The in-situ ellipsometric thicknesses of all compounds were found to be nearly identical to earlier ex-situ ellipsometric measurements suggesting similar surface coverages and structural models in air and under water. Exposure to bovine serum albumin (BSA) shows the self-limiting (d=1.2nm) [S(EO)(6)](2) SAMs to be the most highly protein resistant surfaces relative to bare Au and completely-formed SAMs of the two analogous thiols and octadecanethiol (ODT). When challenged with up to near physiological levels of BSA (2.5mg/mL), protein adsorption on the final state [S(EO)(6)](2) SAM was only 3% of that which adsorbed to the bare Au and ODT SAMs.  相似文献   

5.
Fully conjugated organic molecules, such as the oligo(phenyleneethynylene) (OPE) systems, are of growing interest within the field of molecular electronics, as is the self-assembly of well-defined molecular thin films with predefined functions. The structure and function of such films are intimately related and governed by the structures of their molecular constituents, through the intermolecular interactions and the interactions between the molecules and the substrate, onto which the film is assembled. Here we report on the synthesis of a series of three OPE derivatives, with the general structure phenylethynylene-aryl-ethynylenephenylene-headgroup, and the structural investigation of the self-assembled monolayers (SAMs) formed from them on Au(111) surfaces. The SAMs were characterized by infrared reflection-absorption spectroscopy, spectroscopic ellipsometry, high-resolution X-ray photoemission spectroscopy, and near-edge X-ray absorption fine structure spectroscopy. The effective thickness of the SAMs was observed to decrease as the pi-system of the aryl moiety of the OPE adsorbate was extended perpendicular to its molecular long axis. Changing the aryl moiety from benzene to naphthalene to anthracene resulted in lower molecular surface densities and larger molecular inclination. The average tilt angles for the benzene, naphthalene, and anthracene SAMs were found to be about 30 degrees , 40 degrees , and 42 degrees from the surface normal, respectively. For the largest adsorbate, the anthracene derivative, there is spectroscopic evidence suggesting the existence of nonequivalent binding sites. The differences observed between the SAMs are rationalized in terms of the shape of the adsorbates and the strength of the pi-pi interactions between them.  相似文献   

6.
In-situ scanning tunneling microscopy (STM), cyclic voltammetry (CV), and infrared reflection-adsorption spectroscopy (IRRAS) have been used to examine the electrodeposition of gold onto Pt(111) electrodes modified with benzenethiol (BT) and benzene-1,2-dithiol (BDT) in 0.1 M HClO4 containing 10 microM HAuCl4. Both BT and BDT were attached to Pt(111) via one sulfur headgroup. STM and IRRAS results indicated that the other SH group of BDT was pendant in the electrolyte. Both BT and BDT formed (2 x 2) structures at the coverage of 0.25, and they were transformed into (square root(3) x square root(3))R30 degrees as the coverage was raised to 0.33. These two organic surface modifiers resulted in 3D and 2D gold islands at BT- and BDT-coated Pt(111) electrodes, respectively. The pendant SH group of BDT could interact specifically with gold adspecies to immobilize gold adatoms on the Pt(111) substrate, which yields a 2D growth of gold deposition. Molecular resolution STM revealed an ordered array of (6 x 2 square root(13)) after a full monolayer of gold was plated on the BDT/Pt(111) electrode. Since BDT was strongly adsorbed on Pt(111), gold adatoms only occupied free sites between BDT admolecules on Pt(111). This is supported by a stripping voltammetric analysis, which reveals no reductive desorption of BDT admolecules at a gold-deposited BDT/Pt(111) electrode. It seems that the BDT adlayer acted as the template for gold deposit on Pt(111). In contrast, a BT adlayer yielded 3D gold deposit on Pt(111). This study demonstrates unambiguously that organic surface modifiers could contribute greatly to the electrodeposition of metal adatoms.  相似文献   

7.
Single-component and mixed self-assembled monolayers (SAMs) of one- and three-ring semirigid tetrahydro-4H-thiopyran end-capped oligo(cyclohexylidenes)-that is, thiopyran (1), 4-(4-cyclohexylidene-cyclohexylidene)tetrahydro-4H-thiopyran (2), and 4-(tetrahydro-4H-thiopyran-4-cyclohexylidene-4'-ylidene)tetrahydro-4H-thiopyran (3)--on Au(111) substrates have been prepared and studied by cyclic voltammetry (CV), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). It was found that the shortest adsorbate 1 more readily forms a SAM than 2 or 3. Notwithstanding, the SAMs of 2 or 3 are thermodynamically more stable due to favorable intermolecular attractions. Holes were made with the AFM tip establishing tilt angles of 30-50 degrees with respect to the surface normal for all SAMs. STM imaging showed well-ordered, line-shaped packing patterns with molecular resolution for the SAM of 2. Similar patterned structures were not observed for 1 and 3. Mixed SAMs were prepared by exposing a SAM of 1 to ethanol solutions of either 2 or 3. STM imaging revealed that domains of molecules of 2 or 3 amidst a monolayer of 1 are formed in both cases. Whereas in the mixed SAM of 1 and 2 the domains are irregularly shaped, circular islands of uniform size are found in the mixed SAM of 1 and 3.  相似文献   

8.
Porphyrin-functionalized oligo(phenyleneethynylene)s (OPE) are promising molecules for molecular electronics applications. Three such molecules () with the common structure P-OPE-AG (P and AG are a porphyrin and anchor group, respectively) and different anchor groups, viz. an acetyl protected thiol, -S-COCH(3) (), an acetyl protected thiol with methylene linker, -CH(2)-S-COCH(3) (), and a trimethylsilylethynyl group, -C[triple bond, length as m-dash]C-Si(CH(3))(3) () have been synthesized and the corresponding self-assembled monolayers (SAMs) on Au(111) substrates have been prepared. The integrity and structural properties of these films were studied by X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. The results suggest that the films formed from have a high orientational order with an almost upright orientation and dense packing of the molecular constituents, i.e. represent a high quality SAM. In contrast, molecule formed disordered molecular layers on Au, even though the molecule-surface bonding (thiolate) is the same as in the case of molecule . This suggests that the methylene linker in molecule has a strong impact on the quality of the resulting film, so that a well-ordered SAM cannot be formed. The silane system, , is also able to bind to the gold surface but the resulting SAM has a poor quality, being significantly disordered and/or comprised of strongly inclined molecules. The above results suggest that the nature of the anchor group along with a possible linker is an important parameter which, to a high extent, predetermines the entire quality of OPE-based molecular layers.  相似文献   

9.
Two new copper (I) pseudorotaxanes bearing a thioctic acid appended unit have been prepared and deposited onto a gold electrode surface, leading to surface-attached electroactive pseudorotaxanes.  相似文献   

10.
The application of a potential to deposit a monolayer of 3-mercaptopropionic acid-histidinyl-histidinyl-histidinyl-aspartyl-aspartyl (3-MPA-HHHDD-OH) controls the density and molecular structure of the peptide monolayer, which results in different wettabilities of the surface, surface density, orientation of the molecule (extended or bent), and nonspecific adsorption of serum proteins. 3-MPA-HHHDD-OH must be deposited at 200 mV to maintain an extended configuration, which promoted low biofouling properties.  相似文献   

11.
The interaction with water of protein-resistant monolayers (SAMs), self-assembled from (triethylene glycol) terminated thiol HS(CH2)11(OCH2CH2)3OMe solutions, was studied using in and ex situ polarization-modulated Fourier transform infrared spectroscopy. In particular, shifts in the position of the characteristic C-O-C stretching vibration were observed after the monolayers had been exposed to water. The shift in frequency increased when the SAM was observed in direct contact with a thin layer of water. It was found that the magnitude of the shift also depended on the surface coverage of the SAM. These findings suggest a rather strong interaction of oligo(ethylene glycol) SAMs with water and indicate the penetration of water into the upper region of the monolayer.  相似文献   

12.
XPS and AES are suitable techniques for studying organic monolayers on metals if radiation doses are kept low. The adsorption of self-assembled (SA) mercaptan monolayers on gold is a process in two stages. The adsorption to near completeness is very rapid. However, the process of orientation of the carbon chains, which is responsible for the blocking of electrochemical reactions takes much longer, as could be shown by ARXPS (angle resolved X-ray photo electron spectroscopy). Adsorption under potential control allows electrochemical experiments during the adsorption process as e.g. the measurement of the capacity of the electric double layer. Furthermore the control of the potential guarantees sure that the metal/liquid interface is well defined during the adsorption process.  相似文献   

13.
XPS and AES are suitable techniques for studying organic monolayers on metals if radiation doses are kept low. The adsorption of self-assembled (SA) mercaptan monolayers on gold is a process in two stages. The adsorption to near completeness is very rapid. However, the process of orientation of the carbon chains, which is responsible for the blocking of electrochemical reactions takes much longer, as could be shown by ARXPS (angle resolved X-ray photo electron spectroscopy). Adsorption under potential control allows electrochemical experiments during the adsorption process as e.g. the measurement of the capacity of the electric double layer. Furthermore the control of the potential guarantees sure that the metal/liquid interface is well defined during the adsorption process.  相似文献   

14.
Self-assembled monolayers (SAMs) with metal electrodes, especially thiols on gold, are the subject of this investigation because of the unique properties of SAM-modified surfaces. Normal alkanethiols are used to modify the surface of a conventional gold electrode to block certain ions such as Pb(II) and Cu(II) from the surface of the electrode. Normal alkanethiols are also used to study the SAM-gold interfacial adsorption-desorption behavior of the self-assembled monolayer. The effects of varying chain length of SAMs, varying concentration of the alkanethiol solutions, immersion time of the pure gold electrode in the SAM solution, and the stability of a SAM-modified gold electrode in fresh chloroform are investigated using the oxidation-reduction peaks of gold. Conditions that optimize the surface coverage and the uniformity of the SAMs have been determined. Normal alkanethiols proved to be a good insulator on the electrode surface. Received: 16 January 1997 / Accepted: 4 March 1997  相似文献   

15.
《Supramolecular Science》1998,5(5-6):607-609
Self-assembled monolayers of 1-teradecanethiol on gold were characterized by means of FTIR-ATR measurements, XPS and contact angle measurements. Linear dichroism measurements using FTIR-ATR are used to estimate the orientation of the alkyl chains. An equation for calculating the orientation angles of the alkyls chains was deduced.  相似文献   

16.
This report describes the reactivity of acid fluoride (AF)-terminated self-assembled monolayers (SAMs) on gold toward amine and alcohol compounds and the potentiality of AF as a reactive intermediate for surface functionalizations. The AF group was generated in situ on a gold surface by reacting the terminal carboxylic acid group in the SAM of 16-mercaptohexadecanoic acid with cyanuric fluoride and pyridine under the optimized conditions. AF was found to be highly reactive toward various amine groups, such as primary and secondary amines, but it did not react effectively with alcohol. In addition, the amide coupling reaction by microcontact printing (microCP) was compared with the solution-based reaction: when amine-derivatized ferrocene compound was used for 1-min microCP on the AF-activated surface, the surface coverage of the reaction product was about 83% of 3.45 x 1014 cm-2, the coverage obtained in the solution-based reaction. On the basis of the high reaction efficiency of microCP, the AF-activated surface was also used as a platform for patterning a biological ligand, biotin.  相似文献   

17.
Stability of self-assembled monolayers on titanium and gold   总被引:1,自引:0,他引:1  
Methyl- and hydroxyl-terminated phosphonic acid self-assembled monolayers (SAMs) were coated on Ti from aqueous solution. Dodecyl phosphate and dodecyltrichlorosilane SAMs were also coated on Ti using solution-phase deposition. The stability of SAMs on Ti was investigated in Tris-buffered saline (TBS) at 37 degrees C using X-ray photoelectron spectroscopy, contact angle goniometry, and atomic force microscopy. For comparison purposes, a hydroxyl-terminated thiol SAM was coated on Au, and its stability was also investigated under similar conditions. In TBS, a significant proportion of phosphonic acid or phosphate molecules were desorbed from the Ti surface within 1 day, while the trichlorosilane SAM on Ti or thiol SAM on Au was stable for up to 7 days under similar conditions. The stability of hydroxyl-terminated phosphonic acid SAM coated Ti and thiol SAM coated Au was investigated in ambient air and ultraviolet (UV) light. In ambient air, the phosphonic acid SAM on Ti was stable for up to 14 days, while the thiol SAM on Au was not stable for 1 day. Under UV-radiation exposure, the alkyl chains of the phosphonic acid SAM were decomposed, leaving only the phosphonate groups on the Ti surface after 12 h. Under similar conditions, decomposition of alkyl chains of the thiol SAM was observed on the Au surface accompanied by oxidation of thiolates.  相似文献   

18.
Shape-persistent rigid phenylene-ethynylene-butadiynylenes form lamellar self-assembled monolayers (SAMs) at the HOPG/TCB interface, which were studied by scanning tunneling microscopy (STM) with submolecular resolution. Substitution of the terminating acetylene functions with polar cyanopropyldimethylsilyl groups leads to 2D phase separation and defined rod-rod interactions, which determine the packing distances between the rigid rods. The results stimulated the connection of rigid rods via septiarylene clamp units. They covalently link two rigid rod units and define the intramolecular rod-rod distance that matches the alkoxy substituent chain lengths. The systems can be described as half-ring structures of two rigid rods connected via a rotatable joint unit. These acetylene-terminated half-ring structures were also oligomerized under Cu and Pd catalysis to yield defined acyclic and cyclic oligomers. Detailed STM studies decoded the molecular origin of the surface patterning of such systems. The dodecyloxy side chains are adsorbed along the HOPG main axes and, together with the alkoxy backbone angle, determine the adsorption direction of the adlayers.  相似文献   

19.
Exposure of oligo(ethylene glycol) (OEG)-terminated self-assembled monolayers (SAMs) to UV light leads to the formation of aldehyde groups, leading to a simple one-step method for the introduction of reactive functional groups to protein-resistant surfaces. X-ray photoelectron spectroscopy has been used to demonstrate binding of amines to the modified surfaces, while surface plasmon resonance has shown that proteins are covalently bound. Modified OEG monolayers bind streptavidin at least as well as N-hydroxysuccinimidyl ester functionalized monolayers. Micrometer and nanometer-scale patterns are conveniently fabricated by exposing the monolayers using, respectively, a mask and a scanning near-field optical microscope.  相似文献   

20.
Molecular simulations were performed to study a system consisting of protein (e.g., lysozyme) and self-assembled monolayers (SAMs) terminating with different chemical groups in the presence of explicit water molecules and ions. Mixed SAMs of oligo (ethylene glycol) [S(CH2)4(OCH2CH2)4OH, (OEG)] and hydroxyl-terminated SAMs [S(CH2)4OH] with a mole fraction of OEG at chiOEG = 0.2, 0.5, 0.8, and 1.0 were used in this study. In addition, methyl-terminated SAMs [S(CH2)11CH3] were also studied for comparison. The structural and dynamic behavior of hydration water, the flexibility and conformation state of SAMs, and the orientation and conformation of protein were examined. Simulation results were compared with those of experiments. It appears that there is a correlation between OEG surface resistance to protein adsorption and the surface density of OEG chains, which leads to a large number of tightly bound water molecules around OEG chains and the rapid mobility of hydrated SAM chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号