首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amorphous Si:C:O:H films were fabricated at low temperature by C2F6 and O2/C2F6 plasma treating silicone oil liquid. The a-Si:C:O:H films fabricated by C2F6 plasma treatment exhibited white photoluminescence at room temperature, while that by O2/C2F6 plasma treatment exhibited blue photoluminescence. Fourier transformed infrared spectroscopy and Raman spectroscopy studies showed that the sp3 and sp2 hybridized carbons, SiC bond, SiO bond and carbon-related defects in a-Si:C:O:H films correlated with photoluminescence. It is suggested that the blue emission at 469 nm was related to the sp3 and sp2 hybridized carbons, SiC bond, carbon dangling bonds as well as SiO short chains and small clusters, while the light emitting at 554 nm was related to the carbon-related defects.  相似文献   

2.
As-deposited HfO2 films were modified by CHF3, C4F8, and mixed C4F8/O2 plasmas in a dual-frequency capacitively coupled plasma chamber driven by radio frequency generators of 60 MHz as the high frequency (HF) source and 2 MHz as the low frequency source (60/2 MHz). The influences of various surface plasma treatments under CHF3, C4F8, and C4F8/O2 were investigated in order to understand the chemical and structural changes in thin-film systems, as well as their influence on the electrical properties. Fluorine atoms were incorporated into the HfO2 films by either CHF3 or C4F8 plasma treatment; meanwhile, the C/F films were formed on the surface of the HfO2 films. The formation of C/F layers decreased the k value of the gate stacks because of its low dielectric constant. However, the addition of O2 gas in the discharge gases suppressed the formation of C/F layers. After thermal annealing, tetragonal HfO2 phase was investigated in both samples treated with CHF3 and C4F8 plasmas. However, the samples treated with O-rich plasmas showed monoclinic phase, which indicated that the addition of O plasmas could influence the Hf/O ratio of the HfO2 films. The mechanism of the t-HfO2 formation was attributed to oxygen insufficiency generated by the incorporation of F atoms. The capacitors treated with C4F8/O2 plasmas displayed the highest k value, which ascribed that the C/F layers were suppressed and the tetragonal phase of HfO2 was formed. Good electrical properties, especially on the hysteresis voltage and frequency dispersion, were obtained because the bulk traps were passivated by the incorporation of F atoms. However, the H-related traps were generated during the CHF3 plasma treatments, which caused the performance degradation. All the treated samples showed lower leakage current density than the as-deposited HfO2 films at negative bias due to the reduced trap-assisted tunneling by the incorporation of F to block the electrons transferring from metal electrode to the trap level.  相似文献   

3.
The 16O + 9Be reactions have been studied from Ec.m. = 2.0 MeV to 5.1 MeV, an energy near the top of the Coulomb barrier. The cross section for the neutron transfer reaction 9Be(16O,17O1 (0.87 MeV))8Be has been measured over this range by detecting the prompt 0.87 MeV γ-rays. The total fusion cross section has been determined from Ec.m. = 2.8 to 5.1 MeV by observing individual γ-ray transitions in the evaporation residues with a Ge(Li) detector, and then summing the separate yields. Direct processes are found to dominate the reaction yield below Ec.m. = 4 MeV. A comparison of the energy dependence of the fusion cross section for this reaction and the 12C + 13C reaction, which proceeds via the formation of the same compound nucleus, 25Mg, reveals differences at sub-barrier energies. Optical model and incoming-wave boundary condition calculations are presented. Data have also been obtained for the near optimum Q-value neutron-transfer reactions 9Be(12C, 13C1)8Be and 9Be(19F, 20F)8Be, and these are discussed in terms of a simple model of sub-barrier direct reactions.  相似文献   

4.
Total photoabsorption spectra of CF3COCH3 were measured in the C, F and O K-shell regions and the peak assignments were tentatively given. The K-shell electrons of C, F and O atoms were selectively excited into the π* orbital. The kinetic energy (KE) distribution of CF3+ formed through the π* states gave the maxima at KE = 0 and 0.43 eV. The yield of CF3+ with KE = 0 eV increased from 10 to 50% by changing the excitation sites from F 1s to O 1s. This finding was reasonably understood by considering that intramolecular energy flows from the initially excited K-shell electron to vibrational modes of CF3 group. The KE distribution of CH3+ showed a mirror image of that for CF3+.  相似文献   

5.
Abstract

The factors for 18O/16O fractionation between carbonates and CO2 gas produced by the dissolution of the carbonates in phosphoric acid (sealed vessel method) have been investigated as a function of reaction temperature (20–90°C) and cationic substitution in the solid. Synthetic CaCO3, Ca0.75 Mn0.25 CO3, MnCO3, BaCO3 and SrCO3 powders, and a natural kutnahorite sample were used as solids. The δ18O values of the gaseous CO2 liberated by the reaction with phosphoric acid decrease with increasing temperature and seem to be a linear function of T(°K)?2. The slopes are specific for different carbonates. No temperature-depended 13C/12C fractionation seems to exist.  相似文献   

6.
The search and study of quasi-molecular resonances in the 31P composite system populated via two entrance channels are performed with two different experimental techniques. The 16O + 15N reaction products have been studied by the γ-ray detection method at cm. energies ranging from 15.5 MeV to 36.1 MeV. Binary channels of the 16O + 15N and 12C + 19F collisions have been studied by using the kinematical coincidence method at 26 incident energies ranging from Ec.m. = 20.6MeV to 33.5MeV for the first system, and at energies corresponding to the same excitation energies of the composite system for the second system. The 16O + 15N reaction exhibits two prominent gross structures in the large angle elastic scattering excitation function correlated with the resonant structures observed in inelastic channel γ-ray yield measurements. Spin assignments were tentatively made for the two resonances. On the contrary, no such structures can be clearly established in the 12C + 19F system where only indications of non-correlated structures in various channels have been observed.  相似文献   

7.
在原位聚合合成方法的基础上,结合两步烧结过程制得LiFe1-xVx(PO4)(3-y)/3Fy/C.V和F掺杂对碳包覆的磷酸铁锂材料的结构、形貌和电化学性能有影响.通过XRD、FTIR、SEM、充/放电测试和电化学阻抗谱对材料的结构、形貌和电化学性能进行了表征.结果表明,V和F的掺杂并没有破坏橄榄石结构中的LiFePO4/C,但可以提高晶体结构的稳定,降低电荷的转移阻抗,提高锂离子扩散速度,改善了LiFePO4/C材料的循环性能和高倍率性能.  相似文献   

8.
The success of the SOFC rests heavily on materials selection. In this work we address the optimisation of mixed conductivity in fluorite compounds in the search for new improved SOFC anodes based upon oxides. The mobility of electronic carriers is considered to be much higher than that of ionic defects, therefore, doping a good ionic conductor with a small concentration of reducible transition metal ions can form promising mixed conductors. Zirconia based mixed conductors were studied for two reasons. Firstly, zirconia, stabilised in the defect fluorite structure, exhibits a high level of ionic conductivity. Secondly it is the most common electrolyte material for a S.O.F.C. An anode based on zirconia would therefore be expected to offer a good physical compatibility with the electrolyte material and to exhibit a high ionic contribution to total conductivity. Work on the system ZrO2-Nb2O5-Y2O3 showed that the influence of composition on conduction could be determined. This enabled the optimisation of both the electronic and ionic contributions to conduction by compositional selection. These factors were extended to explain conductivity behaviour observed in the comparable system ZrO2-TiO2-Y2O3. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

9.
Dynamical trajectory calculations were carried out for the reactions of11B+237Np and12C,16O and19F+232Th, having mass asymmetries on either side of the Businaro-Gallone critical mass asymmetry αBG, in order to examine the mass asymmetry dependence of fusion reactions in these systems. The compound nucleus formation times were calculated as a function of the partial wave of the reaction for all the systems. This study brings out that for systems with α<αBG, the formation times are significantly larger than for α>αBG, which is caused by the dynamical effects involved in the large scale shape changes taking place in the fusion process as well as due to the interplay between the thermal and the collective motion during the collision process. The calculated time scales are comparable to the experimental values derived from the pre-fission neutron multiplicity measurements.  相似文献   

10.
Several agents are under consideration to replace CF3Br for use in suppressing fires in aircraft cargo bays. In a Federal Aviation Administration (FAA) performance test simulating the explosion of an aerosol can, however, the replacements, when added at sub-inerting concentrations, have all been found to create higher pressure rise than with no agent, hence failing the test. Thermodynamic equilibrium calculations as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for one of these agents, C6F12O (Novec 1230), to understand the reasons for the unexpected enhanced combustion rather than suppression. The high pressure rise with added agent is shown to depend on the amount of agent, and can only occur if a large fraction of the available oxidizer in the chamber is consumed, corresponding to stoichiometric proportions of fuel, oxygen, and agent. A kinetic model for the reaction of C6F12O in hydrocarbon–air flames has been developed. Stirred-reactor simulations predict that at higher agent loadings, the inhibition effectiveness of C6F12O is relatively insensitive to the overall stoichiometry, and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions corresponding to those of the FAA test. The present findings are consistent with and support the earlier analyses for C2HF5 and CF3Br, which were also evaluated in the FAA test.  相似文献   

11.
A study about the 12C(18O, 16O)14C two-neutron transfer reaction was performed at the Catania INFN-LNS laboratory at 84 MeV incident energy. The 16O ejectiles produced in the reactions were momentum analyzed and identified by the MAGNEX spectrometer. The Q-value spectrum of 14C shows several known bound and resonant states, in particular states with 2p-4h configuration respect to the 16O core. The integrated cross sections show an enhanced yield for the two-neutron transfer compared to the one-neutron transfer. These results are some experimental evidences that the (18O, 16O) reaction proceeds mainly by the direct transfer of the neutron pair, instead of a second order process.  相似文献   

12.
The 16O(13C,12C)17O reaction at 50 MeV has been investigated using the kinematical coincidence method. Polarization tensors t 20 and t 40 of 12C[2+ 1] for the quantization axis taken along the direction of propagation have been measured by analyzing the energy spectrum of 12C[2+ 1], modulated by the effect of γ ray emission. The deduced t 40 values significantly deviate from zero, contrary to the prediction of the distorted-wave Born approximation theory based on one-step p shell neutron stripping without spin-dependent interactions. The phenomenological spin–orbit interaction necessary to reproduce the magnitude of measured t 40 is found to be much larger than the folding model prediction. It is shown that the experimental polarization tensors as well as the cross sections can be reproduced by introducing multi-step processes involving excitations in 12C and 13C without introducing spin-dependent interactions. Received: 2 August 1999 / Revised version: 3 February 2000  相似文献   

13.
Cu2O and Ag/Cu2O composite octahedra were synthesized via a hydrothermal reaction of CuAc2 with urea in H2O–propanetriol binary solution by adjusting the quantity of AgNO3 at 180 °C for 10 h. The influence of reaction temperature and time on the morphology and phase of the products was investigated, and a possible growth mechanism of Cu2O octahedron was also proposed. The photocatalytic activities of the as-prepared Cu2O and Ag/Cu2O octahedra for the degradation of methyl orange aqueous solution were studied. The results show that they are effective photocatalysts for the degradation of methyl orange, and the photocatalytic ability of Ag/Cu2O composite is stronger than that of Cu2O octahedra, which are expected to be useful in the treatment of wastewaters.  相似文献   

14.
Excitation functions for the18O(p,n)18F reaction were measured at bombarding energiesE p=4.6 to 6.6 MeV. In and near two resonances of the yield curves atE p=5.622 and 6.061 MeV, angular distributions were measured with neutron time-of-flight techniques. The strong neutron decay to theT=1 state in18F and the similarity of the18O(p,n) and18O(n,n) yield curves give good evidence that the structures in the18O(p,n) yield curve arise from the formation ofT=3/2 states in19F. A two-level-analysis does not give satisfactory fits to the strongly asymmetric angular distributions.  相似文献   

15.
By using genetic algorithm combined with B3LYP and QCISD methods, this paper investigates the stabilities and electronic structures of Al6OMm (M?=?Na, K; m?=?2,4,6) and a few other AlnXNam (X?=?C, N, O) clusters. The results show that the nonmetal doped metal clusters with 26 valence electrons have enhanced stabilities and large energy gaps. This paper extends the Jellium model for the application to the nonmetal doped metal clusters and explains the electronic origin of this strong magic structure. The nonmetal X atom is situated in the centre of the magic clusters. The 2s/2p orbitals of the central atom interact strongly with the superatomic 1S/1P orbitals and form bonding and antibonding orbitals. The bonding orbitals make the C/N/O atoms form s2p6 shell closure, and the antibonding orbitals make the metal moieties form closed 2S22P6 shells. The 26 valence electrons form closed s2p6S2P6D10 shells, and this electronic configuration can be taken as the combination of the octet rule and 18-electron rule. The octahedral Al6O2? core is a superatomic anion with great stability, and it can be used as building blocks to assemble Zintl phase materials by interaction with alkali metals.  相似文献   

16.
《Nuclear Physics A》1987,467(1):61-78
A high-resolution study of the 12C(p, n)12N and 16O(p, n)16F reactions was made at Ep = 35 and 40 MeV. The low-lying states in 12N(1+, 2+ and 2) and in 16F(0, 1, 2 and 3) were clearly resolved, and their angular distributions were measured. Extensive DWBA analysis was made and compared with the data. The calculated angular distribution shapes are found to be in agreement with the data and insensitive to the choice of the parameters involved. On the other hand, the magnitudes of the DWBA cross sections depend strongly on the bound state parameters in the case of a transition from a tightly bound state to a loosley bound state. In the other cases the overall uncertainty of the DWBA cross section magnitudes was estimated to be about ±30%. Within this uncertainty the experimental cross sections for the 12C(p, n) reaction were explained by the calculation, but those for the 16O(p, n) reaction were not: the observed strengths were about a half of the calculated values. Since these results agree with those at intermediate energies, the origin of the discrepancy is considered to be in the structure of the mass 16 nuclei rather than in reaction dynamics. In general, the present results compare well with those at intermediate energies, indicating that the structure information extracted from low-energy, high-resolution (p, n) data is basically sound if careful analysis of the data is made.  相似文献   

17.
This work deals with first-principles investigation of the electronic structure of the BF3??H2O complex which is important in catalysis of organic reactions and polymerization. The dissociation energy of the BF3??H2O complex and the nuclear quadrupole interaction parameters for the excited nuclear state 19F* (I = 5/2) of the fluorine nuclei have been studied. Our investigation shows that the complexation bond BO between the BF3 and H2O units is strongly influenced by the larger electronegativity of Oxygen as compared to Nitrogen in BF3??NH3. The quadrupole coupling constants of 19F* and the asymmetry parameter are however quite close to those for BF3??NH3. The likely reasons for these features of these two important catalytic systems are suggested.  相似文献   

18.
Calculations are presented of the elastic scattering and fusion cross sections for the astrophysically interesting reactions 12C+12C, 12C+16O and 16O+16O. The calculations are performed using the incoming wave boundary condition (IWB) and a real ion-ion interaction potential. The results are compared with the available experimental data for the energy region near and below the Coulomb barrier. With values of two adjustable potential parameters (the radial position of the l = 0 barrier and the diffuseness) determined by fitting elastic scattering data, good agreement is obtained for the average energy dependence of the 12C+12C and 12C+16O fusion cross sections. In the case of 16O+16O, both the calculated absolute magnitude and the energy dependence of the fusion cross section are inconsistent with the data and this discrepancy is discussed.  相似文献   

19.
The dynamics of the F + CH4 → HF + CH3 and F + CD4 → DF + CD3 reactions have been investigated using classical trajectory calculations at the MP2/cc-pvdz level of theory. The trajectories were calculated directly from electronic structure computations, and a Hessian based method with updating was used to integrate the trajectories. Using this method, product rovibrational populations and internal energy distributions were obtained for the F + CH4 and F + CD4 reactions. The theoretical results were compared with the available experimental data and previous calculations results. The state distributions of the reaction F + CH4 in these calculations are in reasonable agreement with the experimental results, which indicates that the experimental behavior of the reaction could be well reproduced by the direct classical trajectory calculations at MP2/cc-pvdz level. As such, the product rovibrational populations and internal energy distributions for the reaction F + CD4 were predicted. The same degree of agreement between theory and experiment as the F + CH4 reaction is expected.  相似文献   

20.
Pt/C, PtRu/C, PtBi/C, and PtRuBi/C electrocatalysts (20 wt.% metal loading) were prepared by borohydride reduction using H2PtCl6·6H2O, RuCl3·xH2O, and Bi(NO3)3·5H2O as metal sources and Vulcan XC 72 as support. The electrocatalysts were characterized by energy-dispersive X-ray analysis, X-ray diffraction, and thermogravimetric analysis. The electro-oxidation of ethanol was studied in sulfuric acid solution by cyclic voltammetry and chronoamperometry. The electrochemical studies showed that PtRuBi/C (50:40:10) electrocatalyst has superior performance for ethanol electro-oxidation at room temperature compared to the other electrocatalysts. Preliminary tests at 100 °C on a single direct ethanol fuel cell also confirm the results obtained by electrochemical techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号