首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted on a rotating fluid annulus to study the basic interactions between baroclinic lower flows and a stably stratified upper layer. Sufficiently stable stratification is necessary for steady flows to emerge in the lower layer. Upward fluid motions make the baroclinic flows permeate into the upper layer. The stable stratification, however, suppresses upward motions so that zonal fluid velocities decrease with height. In fact, their maximum appears at the top level of the baroclinic lower layer and the sign of the radial temperature gradient changes there; namely, it is warmer on the inner side of the annulus in the upper layer. This temperature profile is reflected in a meridional fluid circulation mixing both layers. In the upper layer of the wave flow, there exists a critical level below and above which the zonal fluid velocities have opposite directions for the wave to have a phase shift of half a wavelength in appearance. The experimental results correspond to real atmospheric phenomena.  相似文献   

2.
The problem of steady-state internal waves in a weakly stratified two-layer fluid with a density that is constant in the lower layer and depends exponentially on the depth in the upper layer is considered. The spectral properties of the equations of small perturbations of a homogeneous piecewise-constant flow are described. A nonlinear ordinary differential equation describing solitary waves and smooth bores on the layer interface is obtained using the Boussinesq expansion in a small parameter.  相似文献   

3.
Benjamin [1] and Davis and Acrivos [2] derived an equation for long steady nonlinear internal waves in an infinitely deep stratified fluid when the density varies only in a layer whose thickness is small compared with the characteristic perturbation length. Ono [3] generalized this equation to the unsteady case. The resulting equation was subsequently called the Benjamin—Ono equation. Steady solutions of this equation were found by Benjamin and Ono in the form of solitons and periodic waves. In the present paper it is shown that long nonlinear waves on shallow water in the presence of a horizontal magnetic field can also be described by the Benjamin—Ono equation, and not the Korteweg—de Vries equation [4], as in the case when there is no field. Moreover, in contrast to a soliton in a stratified fluid a soliton on shallow water in a horizontal magnetic field moves with a velocity less than the velocity of infinitely long perturbations of small amplitude. The dependence of the parameters of a soliton and a periodic wave on the intensity and direction of the unperturbed magnetic field is investigated.  相似文献   

4.
5.
This study investigates the baroclinic instability of a two-layer rotating fluid system. The instability is generated by releasing a cylinder of buoyant fluid at the surface of ambient fluid. The buoyant fluid is dyed so that its depth may be determined from its optical thickness. The system first adjusts until the horizontal density gradient is balanced by a flow along the front, and the adjusted state is then unstable to azimuthal waves. Contours of constant upper layer depth are examined, and the perturbation at each azimuthal wavenumber is determined. The initial wavenumber is well modelled by simple quasi-geostrophic theory. There is a clear high wavenumber cutoff, and a transfer of energy to larger scales with time.  相似文献   

6.
分层流体中内孤立波在台阶上的反射和透射   总被引:2,自引:0,他引:2  
基于匹配渐近展开和格林函数的方法,研究了两层流体系统中内孤立波在台阶地形上透射、 反射及其分裂的演化特征. 通过保角变换和求解奇异Fredholm积分方程,获得了反映地形 效应对Boussinesq方程影响的约化边界条件,藉此建立了KdV演化方程的``初值'问题, 根据散射反演理论获得了反射波和透射波的解析表达式. 分析结果表明:上下流体层的厚度 比、密度比以及台阶高度对于反射和透射波振幅及其分裂具有显著的影响. 尤其当上层流体 厚度小于下层厚度时,由于存在临界点,在其附近反射波的幅值随台阶高度的演化由单调增 变为单调减,透射波的幅值由单调减变为单调增;上台阶的反射波与入射波反相,其最大幅 值可达到入射波的数倍;此外,下台阶反射波也可发展为单支孤立波,它区别于单层流体中 反射波仅为衰减的振荡波列.  相似文献   

7.
The two-dimensional problem of steady oscillations of a horizontal cylinder submerged in a linearly stratified fluid layer whose upper boundary is ice cover is considered in a linear treatment using the Boussinesq approximation. The method of mass sources distributed along the body contour is used for the internal wave generation regime, and the integral equation for the disturbed pressure in the fluid is used for the regime of no internal waves. The hydrodynamic load acting on the body was calculated as a function of the oscillation frequency for the case of a continuous ice cover and for special cases (broken ice, free surface, and rigid lid).  相似文献   

8.
The problem of the stabilization of the diffusion-induced flow over a sphere submerged in a continuously stratified fluid is solved using both asymptotic and numerical methods. The analytical solution describes the structure of the main convective cells, including thin meridional jets flowing along the surface and plumes spreading from the flow convergence regions above the upper and lower poles of the sphere which gradually return the fluid particles to the neutral buoyancy horizon. The total width of the flows adjacent to the surface exceeds the thickness of the salinity deficit layer or the density boundary layer. The numerical solution of the complete problem in the nonlinear formulation describes the main convective cells and two systems of unsteady integral waves formed in the vicinity of the sphere poles. At large times, out of the entire system of internal waves only those nearest to the neighborhood of their horizon of formation remain clearly defined. The calculated flow patterns are in agreement with each other and the data of shadow visualization of the stratified fluid structure near a submerged obstacle at rest.  相似文献   

9.
Hamiltonian formulation of nonlinear water waves in a two-fluid system   总被引:4,自引:2,他引:2  
IntroductionThegeometrizationofmechanicsisatendencyofthedevelopmentofcontinuummechanicsanddrawsextensiveatentionofresearchers...  相似文献   

10.
Using linear water wave theory, we consider a three-dimensional problem involving the interaction of waves with a sphere in a fluid consisting of two layers with the upper layer and lower layer bounded above and below, respectively, by rigid horizontal walls, which are approximations of the free surface and the bottom surface; these walls can be assumed to constitute a channel. The effects of surface tension at the surface of separation is neglected. For such a situation time-harmonic waves propagate with one wave number only, unlike the case when one of the layers is of infinite depth with the waves propagating with two wave numbers. Method of multipole expansions is used to find the particular solutions for the problems of wave radiation and scattering by a submerged sphere placed in either of the upper or lower layer. The added-mass and damping coefficients for heave and sway motions are derived and plotted against various values of the wave number. Similarly the exciting forces due to heave and sway motions are evaluated and presented graphically. The features of the results find good agreement with previously available results from the point of view of physical interpretation.  相似文献   

11.
12.
The plane problem of the small steady-state oscillations of a horizontal cylinder arbitrarily located in a three-layer fluid whose upper and lower layers are homogeneous and whose middle layer is linearly stratified is considered in the linear formulation using the Boussinesq approximation. The fluid is assumed to be ideal and incompressible. The method of mass sources distributed along the body contour is used in the internal wave generation regime and an integral equation for the fluid pressure is derived in the non-wave regime. The hydrodynamic load acting on the body is calculated as a function of the oscillation frequency of the cylinder and its location. The results are compared with experimental data.  相似文献   

13.
The stability of a fluid saturated, horizontal porous layer in the presence of a solute concentration gradient and time-periodic thermal gradient is examined. The modulated gradient is the result of a sinusoidal upper surface temperature which models the effect of variable solar radiation heating of the layer. Darcy's law and the Boussinesq approximation are employed, and we assume an equation of state linear in temperature and concentration. A linear stability analysis is carried out to obtain predictions for the onset of convection and critical wavenumbers for the system. The critical conditions are obtained via the Galerkin method and Floquet theory. The effects of variable concentration gradient, temperature modulation amplitude and frequency are examined, and compared with the results obtained analytically from the corresponding unmodulated problem. It is shown that instabilities can occur as convective motions which are synchronous or subharmonic with the surface heating, or can be identified via complex conjugate Floquet exponents. The neutral stability curves at the transitions between instabilities are found to be bimodal when the temperature is time-periodic, and are characterized by jumps in the critical wavenumbers. Received February 5, 1998  相似文献   

14.
In this paper, we study the existence and the role of solitary waves in the finite amplitude instability of a layer of a second-order fluid flowing down an inclined plane. The layer becomes unstable for disturbances of large wavelength for a critical value of Reynolds number which decreases with increase in the viscoelastic parameter M. The long-term evolution of a disturbance with an initial cosinusoidal profile as a result of this instability reveals the existence of a train of solitary waves propagating on the free surface. A novel result of this study is that the number of solitary waves decreases with in crease in M. When surface tension is large, we use dynamical system theory to describe solitary waves in a moving frame by homoclinic trajectories of an associated ordinary differential equation.  相似文献   

15.
二层流体中波动问题的Hamilton正则方程   总被引:1,自引:0,他引:1  
马晨明  乐嘉春 《力学季刊》2001,22(3):374-377
研究了两种常密度不可压缩理想流体组成的垂直分层的二流体系统的无旋等熵流动,考虑了上层流体与空气及两层流体间的表面张力。流动区域在水平方向无限伸展,上层流体有限深度,下层流体无限深。利用自由面及分界面相对于静止时平衡位置的偏移以及两层流体的速度势构造了Hamilton函数。为导出Hamilton正则方程引用了Euler描述下的流体运动的变分原理。自由面的位移是Hamilton意义下的正则变量,其对偶变量是上层流体在自由面上取值的速度势与密度的乘积。另一个正则变量是分界面的位移,其对偶变量是下层流体的密度与下层流体速度势在分界面上所取值的乘积减去上层流体密度与上层流体速度势在分界面上所取值的相应乘积。导出的Hamilton结构对分析分层流动中表面波与内波的相互作用是重要的。  相似文献   

16.
In this paper, the author derives the modified Schrödinger equation that governs the envelope created by nearly bichromatic waves, which are defined by the waves whose energy is almost concentrated in two closely approached wavenumbers. The stability of the solution of the modified Schrödinger equation for nearly bichromatic waves on deep water is discussed and the fact that the Benjamin–Feir instability occurs in a condition is shown. Moreover, the solutions of the modified Schrödinger equation for nearly bichromatic waves on deep water are obtained and, in a special case, the solution becomes the standing wave solution is shown.  相似文献   

17.
Analytical solutions are obtained for two problems of transverse internal waves in a viscous fluid contacting with a flat layer of a fixed porous medium. In the first problem, the waves are considered which are caused by the motion of an infinite flat plate located on the fluid surface and performing harmonic oscillations in its plane. In the second problem, the waves are caused by periodic shear stresses applied to the free surface of the fluid. To describe the fluid motion in the porous medium, the unsteady Brinkman equation is used, and the motion of the fluid outside the porous medium is described by the Navier–Stokes equation. Examples of numerical calculations of the fluid velocity and filtration velocity profiles are presented. The existence of fluid layers with counter-directed velocities is revealed.  相似文献   

18.
For some technical applications related to the ice–sea interaction, it is necessary to predict waveguide properties of elastic plates floating on a relatively thin layer of water, which has a non-uniform density distribution across its depth. The issue of particular concern is propagation of low-frequency waves in such a coupled waveguide. In the present paper, a stratified fluid is modelled as two homogeneous, inviscid and incompressible layers with slightly different densities. The lighter layer of fresh water lies on top of the heavier layer of salty water. The former one produces fluid loading at the pre-stressed plate, whereas the latter one is bounded by the sea bottom. The classical asymptotic methods are employed to identify significant regimes of wave motion in such a three-component waveguide. Dispersion diagrams obtained from approximate dispersion relations are compared with their exact counterparts. The phenomena of veering and generation of waves with zero group velocity induced by pre-stress are identified and quantified.  相似文献   

19.
In this paper, we prove the existence of a large family of nontrivial bifurcating standing waves for a model system which describes two-way propagation of water waves in a channel of finite depth or in the near shore zone. In particular, it is shown that, contrary to the classical standing gravity wave problem on a fluid layer of finite depth, the Lyapunov–Schmidt method applies to find the bifurcation equation. The bifurcation set is formed with the discrete union of Whitney's umbrellas in the three-dimensional space formed with 3 parameters representing the time-period and the wave length, and the average of wave amplitude.  相似文献   

20.
A simplified model of the moist axisymmetric Hadley circulation is examined in the asymptotic limit in which surface drag is strong and the meridional wind is weak compared to the zonal wind. Our model consists of the quasi-equilibrium tropical circulation model (QTCM) equations on an axisymmetric aquaplanet equatorial beta-plane. This model includes two vertical momentum modes, one baroclinic and one barotropic. Prior studies use either continuous stratification, or a shallow water system best viewed as representing the upper troposphere. The analysis here focuses on the interaction of the baroclinic and barotropic modes, and the way in which this interaction allows the constraints on the circulation known from the fully stratified case to be satisfied in an approximate way. The dry equations, with temperature forced by Newtonian relaxation towards a prescribed radiative equilibrium, are solved first. To leading order, the resulting circulation has a zonal wind profile corresponding to uniform angular momentum at a level near the tropopause, and zero zonal surface wind, owing to the cancelation of the barotropic and baroclinic modes there. The weak surface winds are calculated from the first-order corrections. The broad features of these solutions are similar to those obtained in previous studies of the dry Hadley circulation. The moist equations are solved next, with a fixed sea surface temperature at the lower boundary and simple parameterizations of surface fluxes, deep convection, and radiative transfer. The solutions yield the structure of the barotropic and baroclinic winds, as well as the temperature and moisture fields. In addition, we derive expressions for the width and strength of the equatorial precipitating region (ITCZ) and the width of the entire Hadley circulation. The ITCZ width is on the order of a few degrees in the absence of any horizontal diffusion and is relatively insensitive to parameter variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号