首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Biotransformations of differently configured 2,2-dimethyl-3-substitued-cyclopropanecarbonitriles were studied using a nitrile hydratase/amidase-containing Rhodococcus sp. AJ270 whole-cell catalyst under very mild conditions. Although all of the cis-3-aryl-2,2-dimethylcyclopropanecarbonitriles appeared inert toward the biocatalyst, a number of racemic trans-isomers efficiently underwent a highly enantioselective hydrolysis to produce (+)-(1R,3R)-3-aryl-2,2-dimethylcyclopropanecarboxylic acids and (-)-(1S,3S)-3-aryl-2,2-dimethylcyclopropanecarboxamides in high yields with excellent enantiomeric excesses in most cases. The overall enantioselectivity of the biotransformations of nitriles originated from the combined effects of 1R-enantioselective nitrile hydratase and amidase, with the later being a dominant factor. The influence of the substrates on both reaction efficiency and enantioselectivity was discussed in terms of steric and electronic effects. Coupled with chemical transformations, biotransformations of nitriles provided convenient syntheses of optically pure geminally dimethyl-substituted cyclopropanecarboxylic acids and amides, including chrysanthemic acids, in both enantiomeric forms.  相似文献   

2.
Catalyzed by Rhodococcus erythropolis AJ270 (whole cell catalyst) under very mild conditions, a number of racemic trans-3-arylaziridine-2-carbonitriles and amides were efficiently transformed into enantiopure 2R,3S-3-arylaziridine-2-carboxamides. While the nitrile hydratase exhibits low selectivity against nitrile substrates, the amidase is highly enantioselective toward 2S,3R-3-arylaziridine-2-carboxamides. Upon the treatment with catalytic hydrogenation, amine, or water in the presence of one equivalent of TFA, the resulting aziridine-2-carboxamides underwent highly efficient and stereospecific ring-opening reactions to produce enantiopure alpha-amino-, alpha,beta-diamino-, and alpha-amino-beta-hydroxy-propanamide derivatives in high yields.  相似文献   

3.
Biotransformations of 3-arylpent-4-enenitriles catalyzed by Rhodococcus erythropolis AJ270, a nitrile hydratase/amidase-containing microbial whole-cell catalyst were studied, and an unusual beta-vinyl effect of the substrate on the biocatalytic efficiency and enantioselectivity of the amidase was observed. While 3-arylpent-4-enenitriles and 3-phenylpentanenitrile were efficiently hydrated by the action of the less R-enantioselective nitrile hydratase, the amidase showed greater activity and higher enantioselectivity against 3-arylpent-4-enoic acid amides than 3-arylpentanoic acid amides. Under very mild conditions, nitrile biotransformations provided an efficient synthesis of highly enantiopure (R)-3-arylpent-4-enoic acids and (S)-3-arylpent-4-enoic acid amides, and their applications were demonstrated by the synthesis of chiral gamma-amino acid, 2-pyrrolidinone, and 2-azepinone derivatives.  相似文献   

4.
Catalyzed by a nitrile hydratase/amidase-containing microbial Rhodococcus sp. AJ270 whole-cell catalyst, a number of racemic trans-2,3-epoxy-3-arylpropanenitriles 1 underwent rapid and efficient hydrolysis under very mild conditions to afford 2R,3S-2-arylglycidamides 2 in excellent yield with enantiomeric excess higher than 99.5%. The overall enantioselectivity of the biotransformations originated from the combined effects of a dominantly high 2S-enantioselective amidase and low 2S-enantioselective nitrile hydratase involved in the cell. The influence of the substrates on both reaction efficiency and enantioselectivity was also discussed in terms of steric and electronic effects.  相似文献   

5.
Catalyzed by the nitrile hydratase and the amidease in Rhodococcus sp. AJ270 cells under very mild conditions, a number of alpha-aryl- and alpha-alkyl-substituted DL-glycine nitriles 1 rapidly underwent a highly enantioselective hydrolysis to afford D-(-)-alpha-amino acid amides 2 and L-(+)-alpha-amino acids 3 in high yields with excellent enantiomeric excesses in most cases. The overall enantioselectivity of the biotransformations of nitriles originated from the combined effects of a high L-enantioselective amidase and a low enantioselective nitrile hydratase. The influence of the substrates on both reaction efficiency and enantioselectivity was also discussed in terms of steric and electronic effects. Coupled with chemical hydrolysis of D-(-)-alpha-phenylglycine amide, biotransformation of DL-phenylglycine nitrile was applied in practical scale to produce both D- and L-phenylglycines in high optical purity.  相似文献   

6.
Catalyzed by the Rhodococcus erythropolis AJ270 whole cell catalyst under very mild conditions, biotransformations of racemic 1-arylaziridine-2-carbonitriles proceeded efficiently and enantioselectively to produce highly enantiopure S-1-arylaziridine-2-carboxamides and R-1-arylaziridine-2-carboxylic acids in excellent yields. Although the nitrile hydratase exhibits no selectivity against all nitrile substrates, the amidase is highly R-enantioselective towards 1-arylaziridine-2-carboxamides. When treated with benzyl bromide, 1-phenylaziridine-2S-carboxamide underwent a highly regioselective and enantiospecific ring-opening reaction to afford an almost quantitative yield of R-beta-[(benzyl)phenylamino]-alpha-bromopropanamide (C-2 attack) and R-alpha-[(benzyl)phenylamino]-beta-bromopropanamide (C-3 attack) in a 10.5:1 ratio. Further treatment of the resulting ring-opening products with an N-nucleophilic reagent such as amine and azide led to, through most probably the aziridinium intermediate, the formation of S-alpha-substituted-beta-[(benzyl)phenylamino]propanamides in good chemical yields with high enantiomeric purity.  相似文献   

7.
The usefulness of thin-layer chromatography (TLC) as an efficient measuring technique in the studies of oscillatory trans-enantiomerization of profens from the S to the R configuration (and vice versa) during their storage as 70% ethanol solutions is demonstrated in the literature. S-(+)-ibuprofen, S-(+)-naproxen, and S,R-(+/-)-2-phenylpropionic acid are utilized as the test profens. It is proven possible to show oscillatory instability with the racemic S,R-(+/-)-2-phenylpropionic acid also. Correctness of the TLC assessment is successfully confirmed by means of polarimetry. Upon these preliminary results, it is concluded that the most probable mechanism might embrace the keto-enol tautomerism because of a convenient migration of the proton from one moiety of the profen molecule to another in an aqueous medium. To indirectly verify this hypothesis, profens are stored in dichloromethane, deliberately hampering their ability to dissociate and to re-structure. It is obvious though that the (much less pronounced) electrolytic dissociation can occur in the non-aqueous media as well. It is shown that the non-aqueous solvent considerably suppresses, although they do not completely eradicate, the oscillatory trans-enantiomerization of profens. In view of these findings, the reports which claim a predominant therapeutic potential of the respective S-profens become less convincing and certainly need reconsideration.  相似文献   

8.
腈的生物转化不对称合成β-氨基酸和β-氨基酰胺   总被引:1,自引:0,他引:1  
马大友 《有机化学》2008,28(8):1439-1444
含有腈水合酶和酰胺水解酶的红球菌Rhodococcus erythropolis AJ270能在非常温和的条件下催化一系列β-氨基苯丙腈衍生物的水解反应, 生成相应的β-氨基酸和β-氨基酰胺. 底物结构对生物转化反应的效率及立体选择性影响很大. 3-氨基-3-苯丙腈的生物水解反应显示了较低的立体选择性, 而氮甲基取代衍生物的水解反应则显示了中等立体选择性, 生成相应S构型β-氨基酸和R构型β-氨基酰胺. 氮上大位阻取代基显著降低生物催化效率.  相似文献   

9.
A. Nangia  G. Prasuna 《合成通讯》2013,43(14):1989-1998
R-(+)-pulegone (1) is transformed to (R)-5-methyl-2-(phenylsulfinyl)cyclohexanone (5) (65%, 3 steps). Sulfoxide 5 is converted to R-(-)-3,5-dimethylcyclohex-2-en-1-one (4) (53%, 4 steps) and S-(+)-4 (26%, 3 steps).  相似文献   

10.
The substrate specificity of the heat-stable stereospecific amidase from Klebsiella oxytoca was investigated. In addition to the original substrate, 3,3,3-trifluoro-2-hydroxy-2-methylpropanamide, the amidase accepted 2-hydroxy-2-(trifluoromethyl)-butanamide and 3,3,3-trifluoro-2-amino-2-methylpropanamide as substrates. Compounds with larger side chains and compounds where the hydroxyl group was substituted with a methoxy group, or in which the CF3 group was substituted by CCl3, were not accepted. The biotransformation is a new synthetic route to (R)-(+)-3,3,3-trifluoro-2-amino-2-methylpropanoic acid, and its related (S)-(−)-amide, and to (R)-(+)-2-hydroxy-2-(trifluoromethyl)-butanoic acid and its related (S)-(−)-amide.  相似文献   

11.
[reaction: see text] Asymmetric aldol addition reactions have been conducted with (1R,2S)-ephedrine-derived 3,4,5,6-tetrahydro-2H-1,3,4-oxadiazin-2-one (2). Diastereoselectivities range from 75:25 to 99:1 for the formation of the crude non-Evans syn adducts 8a-h. The facial selectivity of the enolate is directed by the stereogenic N(4)-methyl substituent. Aldol adduct 8a is readily cleaved by acid hydrolysis to afford (2S,3S)-3-hydroxy-2-methyl-3-phenylpropionic acid (9) in >95% ee.  相似文献   

12.
Highly enantioselective hydrolysis of alpha,alpha-disubstituted malononitriles by the strain Rhodococcus sp. CGMCC 0497 expressing both nitrile hydratase and amidase activity to give (R)-alpha,alpha-disubstituted malonamic acids which could be converted to valuable (R)- or (S)-alpha-alkylated amino acids are reported and the yields of the products are improved remarkably at a lower reaction temperature.  相似文献   

13.
Gong QJ  Qiao JL  Du LM  Dong C  Jin WJ 《Talanta》2000,53(2):359-365
Under controlling pH 3, R-(+)- and S-(-)-ofloxacin (OFLX) enantiomers can be well recognized and resolved by the synchronization-1st derivative fluorescence spectroscopic techniques, and the interference from urine blank also can be eliminated. The linear dynamic ranges are 0.36-2.16 (R), 0.36-2.89 and 3.16-31.6 mug/ml (S), respectively, for determining OFLX in urine samples. The limits of detection are 0.36 mug/ml (R) and the recoveries of R-(+)- and S-(-)-OFLX in urine samples are 97-104%. Relative standard deviation is <6.6%. Pharmacokinetic study of OFLX and levofloxacin shows that R-(+)- and S-(-)-ofloxacin reach their peak concentration in urine samples after a healthy subject has taken tablets for approximately 3 and 6 h, respectively. R-(+)-OFLX can be obviously detected in 5-6 h after a healthy subject has taken tablets, indicating the transformation of S-(-)- to R-(+)-OFLX enantiomer in human body (in vitro).  相似文献   

14.
5-Amino-4-aminomethyl-3-aryl-4,5-dihydroisoxazoles 2 were obtained by cycloaddition of nitrile oxides to 1,3-diaminopropenes 1. On reaction with methyl iodide the corresponding 4-(quaternary)-ammoniomethyl iodides 3 were formed. These compounds, on reaction with bases, afforded 5-amino-3-aryl-4-methylene-4,5-dihydroisoxazoles 4. The acid-catalyzed deamination of compounds 2 afforded 4-aminomethyl-3-arylisoxa-zoles 5 and 3-arylisoxazoles as retro-Mannich products. The deamination of 2 to yield 5 was also obtained by base catalysis.  相似文献   

15.
Eugenia C Hann 《Tetrahedron》2004,60(3):577-581
Acidovorax facilis 72W nitrilase catalyzed the regioselective hydrolysis of (E,Z)-2-methyl-2-butenenitrile, producing only (E)-2-methyl-2-butenoic acid with no detectable conversion of (Z)-2-methyl-2-butenenitrile. (E)-2-Methyl-2-butenoic acid, produced in aqueous solution as the ammonium salt, was readily separated from (Z)-2-methyl-2-butenenitrile, and isolated in high yield and purity. The combination of nitrile hydratase and amidase activities of several Comamonas testosteroni strains were also highly regioselective for the production of (E)-2-methyl-2-butenoic acid from (E,Z)-2-methyl-2-butenenitrile.  相似文献   

16.
Subsequent treatment of N-crotoyl-(1S,2R)-bornane-10,2-sultam with EtMgCl, recrystallization of the product and saponification, afforded R-(-)-3-methylpenthanoic acid which was used for acylation of (1R,2S)-bornane-10,2-sultam. The product was converted into N-[(2S,3R)-2-amino-3-methylpentanoyl]-(1R,2S)-bornane-10,2-sultam by hydroxyamination with 1-chloro-1-nitrosocyclohexane, followed by reduction of the hydroxylamine grouping. Saponification of the sultam imide provided (+)-alloisoleucine.  相似文献   

17.
(?)-Dimethyl 2-cyano-2-methylsuccinate ((?)-IIIa) was synthesized from menthyl cyanoacetate ((?)-I), and the absolute configuration of which was elucidated as (S)-configuration by chemical correlation to the known (R)(+)-β-methylterbic acid ((R)(+)-VII). (?)-Dimethyl 2-carbamoyl-2-methylsuccinate ((?)-IV) and (?)-methyl 3-methyl-2,5-dioxo-3-pyrrolidinecarboxylate ((?)-V) are also confirmed as belonging to (S)-configuration and (+)-3-(1-hydroxy-1-methylethyl)-3-methyl-2,5-pyrrolidinedione ((+)-VI) is belonging to (R)-configuration. Preliminary experiments on racemic compounds are also described.  相似文献   

18.
A 1:1 mixture of (N-N)Pd(Me)Cl ?N-N = (S,S)-4,4'-dibenzyl-4,5,4', 5'-tetrahydro-2,2'-bisoxazoline (S,S-4a) and NaBAr(4) ?Ar = 3, 5-C(6)H(3)(CF(3))(2) (5 mol %) catalyzed the asymmetric cyclization/hydrosilylation of dimethyl diallylmalonate (2) and triethylsilane at -30 degrees C for 48 h to form an 8.1:1 mixture of the silylated carbocycle (S,S)-trans-1, 1-dicarbomethoxy-4-methyl-3-?(triethylsilyl)methylcyclop ent ane (S, S-3) (95% de, 72% ee) and dimethyl 3,4-dimethylcyclopentane-1, 1-dicarboxylate (S,S-6) in 64% combined yield. In comparison, a 1:1 mixture of the palladium pyridine-oxazoline complex (N-N)Pd(Me)Cl ?N-N = (R)-(+)-4-isopropyl-2-(2-pyridinyl)-2-oxazoline (R-5b) and NaBAr(4) (5 mol %) catalyzed the asymmetric cyclization/hydrosilylation of 2 and triethylsilane at -32 degrees C for 24 h to form carbocycle S,S-3 in 82% yield (>95% de, 87% ee) as the exclusive product. Asymmetric diene cyclization catalyzed by complex R-5b was compatible with a range of functional groups and produced carbocycles with up to 91% ee. The procedure also tolerated substitution at a terminal olefinic position and at the allylic position of the diene.  相似文献   

19.
Catalyzed by Rhodococcus erythropolis AJ270, a nitrile hydratase and amidase containing microbial whole-cell catalyst, at 10 ℃ and with the use of methanol as a co-solvent, nitrile and amide biotransformations produce 2S-1,4-benzodioxane-2-carboxamide and 2R-1,4-benzodioxane-2-carboxylic acid in high yields with excellent enantioselectivity.  相似文献   

20.
A high-performance liquid chromatographic method has been developed for the quantitation of the R- and S-enantiomers of 2-phenylpropionic acid, ketoprofen and fenoprofen. The assay consists of extracting the arylpropionic acid with an internal standard and measuring the total (R + S) concentration of enantiomers by reversed-phase chromatography, derivatising the chromatographic fraction corresponding to the enantiomers to form R- and S, R-2-phenylethylamide distereoisomers which are resolved by normal-phase chromatography in order to calculate the fraction of each enantiomer. The limits of sensitivity of the assay for 2-phenylpropionic acid, ketoprofen and fenoprofen are 6, 0.2 and 2.5 mg/l, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号