首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Flash photolysis was used to study the reduction of the triplet state of methylene blue by both alkyl- and aryl-amines. The extent of the formation of the semireduced form of the dye yielded rate constants of interaction between the triplet state and the amine ( k 5). A correlation between log k 5 and ionization potentials for alkylamines (slope = -1.75 eV-1) was interpreted as evidence for the formation of a partial charge-transfer intermediate. The rate constants ( k 5) calculated for aryl-amines approached the rate of diffusion in many cases. A Hammett plot for a series of N, N-dimethyl-anilines yielded a moderately large p value (– 3.28) consistent with the formation of a charge-transfer intermediate. It was concluded that reaction of amines with triplet methylene blue leads to the formation of a partial charge-transfer intermediate which may undergo complete electron transfer to yield radicals, or undergo spin inversion and return to the ground state.  相似文献   

2.
The photodecomposition of sulfanilamide (4-aminobenzenesulfonamide), sulfacetamide. sulfathiazole. sulfadiazine, carbutamide and tolbutamide has been studied using the spin traps 2-methyl-2-nitrosopropanc and 5,5-dimethyl-l-pyrroline-l-oxide. The following radicals were trapped during the photolysis of sulfanilamide in aqueous solution: H' and HNC6H4SO2NH, (α-fission). SO2NH2 and C6H4NH2 (δ fission). H2NC6H4SO2 and NH2 (δ-fission). Although the C.,H4SO2NH2 and the SO; radicals were also detected these were not formed directly by homolytic bond fission. Homolytic bond fission was also observed during the irradiation of sulfacetamide (α.δ), sulfadiazine (α). carbutamide (α,δ) and tolbutamide (δ). All of the analogs, with the exception of tolbutamide, generated the SO; radical. Sulfacetamide, sulfadiazine and carbutamide generated the C6H4SO2;NHR radical by some process that did not involve homolytic bond fission. The free radicals generated by these agents may play an important role in their phototoxic and photoallergic effects.  相似文献   

3.
Abstract— The long-lived (> 1 μsec) transients formed in the flash excitation of the representative photosensitizers methylene blue, eosin Y and pyrene have been investigated and various criteria have been used to distinguish between triplet state intermediates and chemical intermediates. Previous assignments of the triplet transients of methylene blue appeared less secure in view of the photochemical reactivity of this dye and its lack of phosphorescence. Earlier assignments of monomeric and dimeric triplet transients of methylene blue are substantiated, however, by the observations that the rate constant for quenching by oxygen is approximately 1/9th diffusion controlled and the formation rates are commensurate with singlet decay rates and by the observation of triplet-triplet annihilation. Additional evidence in support of monomer triplet assignments for methylene blue and eosin Y is provided by the effect of heavy atom quenchers Cs+, Hg2+ and T1+ on decay rates. Due to chemical reactivity, quenching by Iappears less suitable as a diagnostic test for triplet state intermediates. The effect of N3, which is known to quench singlet oxygen molecules and to alter the course of photosensitized oxidations, on the triplet decay of methylene blue, eosin Y and pyrene is also investigated.  相似文献   

4.
Abstract— Photolysis at 254 nm of alkyl benzohydroxamates [C, H, CONHOR: R = CH3 H2CH3 CH(CH3)2, CH2C6H5 CH(CH3)C2H5 CH(CH3)- n -C6H13] in acetonitrile or hydrocarbon solvents gives benzamide. These reactions can be sensitized by benzophenone (at ca. 350 nm) and are quenched by cis-piperylene. Racemization occurred when 2-octyl (+)-benzohydroxamate was irradiated in cyclohexane. These results are consistent with a mechanism involving a triplet biradical. Photolysis of phenyl benzohydroxamate [C6H5CONHOC6H5] and benzyl N -methylbenzohydroxamate [C6H5CON-(CH3)OCH2Q6H5] cannot be quenched with ris-piperylene and appear to be singlet reactions.  相似文献   

5.
Abstract— The influence of chloride ion on the rate of decay of triplet methylene blue in 0.01 M acid in the absence and presence of ferrous ions was investigated by means of laser flash-photolysis monitored by kinetic spectrophotometry. Chloride weakly accelerates decay of 3MBH in aqueous solution in the absence of Fe(II). Quenching of 3MBH2+ by Fe(II) is more strongly catalyzed by Cl- in both water and 50 v/v% aq. CH3CN. The uncatalyzed quenching constant, k 5, is of the order of 1 × 106 M -1 s-1 while in 4.8 M aqueous chloride ( μ – 7.2 M ) k 5= (37.2 ± 1.8) × 106 M -1 s-1. A possible role of chloride is as a bridging species in quenching via electron transfer between 3MBH2+ and Fe(II).  相似文献   

6.
Abstract— Ascorbic acid and ascorbate in chlorophyll ethanol solution were found to be fairly efficient quenchers of the chlorophyll triplet state; comparable to the efficiency of ascorbic acid as a quencher in aqueous pyridine solution.
It has been well established that ascorbic acid quenches the triplet state of chlorophyll in aqueous pyridine solution.(1,2) The bimolecular quenching constant, kQ , is very much less than that for O2 or quinine.(3,4)
Information regarding the quenching of the triplet state of chlorophyll by ascorbic acid in ethanolic solution is lacking. There has been some question as to whether ascorbic acid reduces photoexcited chloro-phyll-ethanolic solution because of its high oxidation potential, or because like the ascorbate ion, it acts only as a quencher; both ascorbic acid and ascorbate in high concentrations gave low quantum yields.(5) The quenching of the triplet state by ascorbic acid and ascorbate was determined by the flash-photolytic method.  相似文献   

7.
Abstract— Flash photolysis experiments on the hydroxylation of lumichrome (L) in aqueous 0.5 M H2SO4 solution in the presence of O2 or Ni2+ as triplet quenchers and quantum yield measurements confirm the assignment of the photoreactive species to the protonated form of the excited singlet state. A mechamism concerning the photochemical step is proposed, accounting for the formation of protonated 9-hydroxy-5,10-dihydrolumichrome (LOH3+). This primary stable photoproduct was characterized by spectral and kinetic data. The dark reactions originating from LOH3+ were investigated, and data regarding the successive steps are presented. The reaction LOH3+ L→ LO + LH3+ is demonstrated to be a two-electron reduction. The rate constant for the reaction of LH2+ with O2 is much larger than that for the oxidation of LH3+ by oxygen.  相似文献   

8.
Abstract— Thermolysis of tetramethyl-l,2-dioxetane is a convenient source of triplet acetone, which can be monitored in aerated solutions by the sensitized fluorescence of 9,10-dibromoanthracene. We have investigated the quenching of chemiexcited triplet acetone in air-equilibrated aqueous solutions containing the 9,10-dibromoanthracene-2-sulfonate ion by five classes of compounds: indoles, tyrosine derivatives, quinones, riboflavin, and xanthene dyes. Quenching rates for indoles, tyrosine and its 3,5-dihalogenoderivatives, and xanthene dyes (kq= 108-109 M-1 s-1) are considerably smaller than the diffusion controlled rate, whereas those for quenchers with high electroaffinities, such as quinones (IP = 10–11 eV), approach the diffusion controlled rate (kq= 1010 M-1 s-1). Energy transfer for riboflavin probably occurs by a triplet-singlet Förster type process.
A comparison of the present data with previous studies of quenching of enzymically generated triplet acetone (isobutanal/O2/horseradish peroxidase) by the same classes of quenchers (except riboflavin) reveals that, independent of the nature of the quencher and the deactivation mechanism, the Stern-Volmer quenching constants ( kq t0) are systematically about one order of magnitude higher in the enzymatic system. The difference is attributed to a longer lifetime of triplet acetone in the latter case, "protected" in an enzyme cavity against collisions with dissolved oxygen.  相似文献   

9.
Abstract— An investigation has been made of the reaction between methylene, formed by the photolysis of ketene, and hydrogen. Ethane, ethylene and methane are the major hydrocarbon products, and it has been shown that the formation of these products may be adequately described by the sequence of processes
CH2CO + hv → CH2+ CO (1)
CH2+ H2→ CH3+H (2)
2CH3→ C2H6 (3)
CH3+ H2+ CH4+ H (4)
CH2+ CH2CO → C2H4+ CO (7)
In particular, the relative rates of ethane and methane formation are consistent with the known rate constants for reactions (3) and (4), and it is not therefore necessary to postulate the participation of an 'insertion' process
CH2+ H2→ CH4 (6) to account for the formation of methane.
Decrease of the energy possessed by the methylene, either by increase of the wavelength of ketene photolysis, or by increase of gas pressure, is shown to result in an increase in the reactivity of the methylene towards ketene relative to its reactivity towards hydrogen (i.e. the ratio k2/k2 increases).  相似文献   

10.
Abstract. The quantum yields of HCI (φHC1) formation have been measured for the photolysis of N -methyldiphenylamine (MeDPA), triphenylamine (TPA) and diphenylamine (DPA) in the presence of CCl4 in polar solvents. The quantum yields of N-methylcarbazole formation (φmφca) have also been determined for the system MeDPA-CCl4. With increasing CCl4 concentration, φHCl increases as φMeCA decreases, and φHCl reaches maximum values 2.7 at 1 M CCl4. Using laser photolysis, transient spectra have been recorded for MeDPA in the absence and presence of CCl4 in polar and non-polar solvents, and for TPA. Transient absorption due to the triplet states and photocyclization products (without CCU), exciplexes, the (C6H5)2 NCHi radical, the MeDPA+ cation radical, the (TPA+., CCl4) ion pair, and the TPA+ cation radical have been identified. The mechanistic implications of these results are discussed.  相似文献   

11.
Abstract— The photodecomposition of sulfanilamide, 4-aminobenzoic acid and related analogs in aqueous solution has been studied with the aid of spin traps 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and CH3NO2 as well as by direct electron spin resonance techniques. The NH2 radical was trapped by DMPO during the photolysis of aqueous solutions of sulfanilamide with a Xe arc lamp. Studies with [15N1]-sulfanilamide indicated that the NH2 radical was generated by homolytic fission of the sulfur-nitrogen bond. Under the same conditions DMPO trapped the H and SO3 radicals during photolysis of sulfanic acid. Direct photolysis of sulfanilamide, sulfanilic acid and Na2SO3 in the absence of any spin trap yielded the SO3 radical. Photolysis of 4-aminobenzoic acid at pH 7 gave the H radical which was trapped by DMPO. At low pH values OH and C6H4COOH radicals were generated during the photolysis of 4-aminobenzoic acid. No eaq were trapped by CH3NO2 when acid (pH 4) and neutral aqueous solutions of sulfanilamide or 4-aminobenzoic acid were photoirradiated. The mechanism of formation of known photoproducts from the free radicals generated by sulfanilamide and 4-aminobenzoic acid during irradiation are discussed. The free radicals generated by these agents may play an important role in their phototoxic and photoallergic effects.  相似文献   

12.
Abstract— p K values of ionisation equilibrium of thiazines dyes in their triplet state have been measured in aqueous solutions by spectroscopy. The triplet-triplet absorption bands, in the red part of the spectrum, are given for thionine, azurs and methylene blue. It is shown that, in the pH range 4–9, the equilibria investigated correspond to a second protonation of thiazines dyes that occurs in the triplet state:
3TH++ H+3TH22+
designating by 3TH+ the thiazine cation similar to the species stable in neutral aqueous solutions.  相似文献   

13.
Abstract— The triplet state of crocetin, which is a water soluble carotenoid, has been sensitized by psoralen. The triplet extinction coefficient, εT (73000 dm3 mol-1 cm-1 at 470 nm), the triplet-triplet spectrum and the quantum yield of triplet formation, φT (less than 1%) are reported in aqueous solution.
In order to calculate the extinction coefficient of crocetin it was necessary to obtain εT for psoralen in water (10000dm3 mol-1 cm-1 at 450 nm). This latter value was obtained using the complete conversion technique and is reported with the triplet-triplet spectrum.  相似文献   

14.
Abstract Porphyrin-C60 dyads in which the two chromophores are linked by a bicyclic bridge have been synthesized using the Diels-Alder reaction. The porphyin singlet lifetimes of both the zinc (Pzn-C60) and free base (P-C60) dyads, determined by time-resolved fluorescence measurements, are ≦17 ps in toluene. This substantial quenching is due to singlet-singlet energy transfer to C60 The lifetime of Pzn-1C60 is -5 ps in toluene, whereas the singlet lifetime of an appropriate C60 model compound is 1.2 ns. This quenching is attributed to electron transfer to yield Pznbull;+-C60bull;-. In toluene, P-1C60 is unquenched; the lack of electron transfer is due to unfavorable thermodynamics. In this solvent, a transient state with an absorption maximum at 700 ran and a lifetime of-10 μs was detected using transient absorption methods. This state was quenched by oxygen, and is assigned to the C60 triplet. In the more polar benzonitrile, P-1C60 underoes photoinduced electron transfer to give P+-C60bull;-. The electron transfer rate constant is −2 × 1011 s−1.  相似文献   

15.
Abstract— The extinction coefficient εT, of triplet benzophenone in benzene has been directly determined by absolute measurements of absorbed energy and triplet absorbance, Δ D 0T, under demonstrably linear conditions where incident excitation energy, E 0, and ground state absorbance, A 0, are both extrapolated to zero. The result, 7220 ± 320 M -1 cm-1 at 530 nm, validates and slightly corrects many measurements relative to benzophenone of triplet extinction coefficients made by the energy transfer technique, and of triplet yields obtained by the comparative method.
As E 0 and A 0 both decrease, Δ D 0T becomes proportional to their product. In this situation, the ratio R = (1/ A 0)(dΔ D 0T/d E 0) = (εT - εGT. Measurements of R , referred to benzophenone, give (εT - εGT for any substance, without necessity for absolute energy calibration.
Both absolute and relative laser flash measurements on zinc tetraphenyl porphyrin (εT - εG at 470 nm = 7.3 × 104 M -1 cm-1) give φT= 0.83 ± 0.04.  相似文献   

16.
Abstract— The quantum yield of the photodynamic inactivation of lysozyme increases in the sequence acridine orange, methylene blue, proflavine and acriflavine (1:5:6:12). At least up to protein concentrations of 0.1 m M , singlet oxygen is exclusively responsible for the inactivation of the enzyme. For methylene blue, acriflavine and proflavine the quantum yields decrease considerably with increasing dye concentrations. From measurements in H2O and D2O buffer solutions it was concluded that in the case of methylene blue the effect is mainly caused by the quenching of singlet oxygen [rate constant (3–4) × 108 M −1 s−1]. For the acridine sensitizers both singlet oxygen and dye triplet quenching processes have to be taken into consideration. It has been found that all sensitizers act as competitive inhibitors of the enzymatic reaction of lysozyme. However, the dye-protein interaction near the active center cannot be responsible for the observed dye self-quenching effect.  相似文献   

17.
Abstract— An unexpected transmembrane potential effect on the recombination rate of the pheophytin or bacteriopheophytin anion-radicals (dissolved in membrane) and ascorbic ion-radicals (dissolved in aqueous interior) has been established in liposomes. The influence of transmembrane potential on the recombination rate of Ru3+ (dissolved in inner volume) and (C18H37)V+ or (C14H29)V+ (dissolved in membrane) was observed. The potential was created by a potassium concentration gradient between inner and outer volumes of liposomes in the presence of valinomycin. The effect of the potential was considered on the bases of: (1) it was determined by the diffusional drift of the hydrophobic radicals in a radial direction in the membrane, according to the direction of the electric field; (2) the electric field changed the rate constant of the electron transfer, owing to the effects on the free energy and electronic coupling. Our results show the first explanation to be preferable.  相似文献   

18.
Abstract—Rate constants, k q , for the reaction of cationic and neutral acridine orange and 10-methylacridine orange triplet states (3AOH +, 3AO, 3MAO+) with a series of electron donors have been measured. Two different protolytic forms of the semireduced dye radical are produced by acridine orange triplet quenching at various pHM values in methanolic solution.
It is found that k 4 decreases with increasing oxidation potential of the reducing agent for all triplet states in a manner which is expected for electron transfer reactions. The different reactivities of the cationic and neutral triplet forms can, therefore, be attributed to the difference in reduction potentials of these species. The difference in reduction potentials is related to the p K M values of triplet state, p K TM , and semireduced dye radical, p K MS , by thermodynamic consideration. p K TM (3AOH+/3AO) is determined to be 11.2. From thisp K SM (AOH./AO;) is estimated to be 17–18. This is in striking contrast to the protolytic equilibrium of the semireduced dye radicals found to be pKF= 4.1. We conclude that the last value represents the second protonation equilibrium (AOH+2./AOH). This conclusion is confirmed by spectroscopic data.  相似文献   

19.
Abstract— The light-induced capacitance changes and also both photovoltage and photocurrent under continuous illumination have been investigated in pigmented liquid crystal bilayer membranes (PBLM)‡ containing TCNQ as photosensitizer with Na2SO3 electron donor on one side and methylene blue electron acceptor on the other side. The results have shown that TCNQ in cyanobiphenyl membrane produces a unique photoactive BLM system in which all three main parameters (conductivity, capacity and voltage across the membrane) are in a wide range altered by the light. It is shown that a TCNQ-cyanobiphenyl charge transfer complex is responsible for the observed photochanges. The possible mechanism of photoinduced electrical effects in this type of PBLM is discussed.  相似文献   

20.
Abstract— Absorption changes attributed to the triplet state of carotenoids and to primary electron donors (P-700. P-680): and fluorescence quenching at several wavelengths have been measured with a single apparatus. following flash excitation with a dye or a ruby laser. Spinach chloroplasts as well as subchloroplast particles enriched in Photosystem-1 (F1), Photosystem-2 (F1) or the light-harvesting Chl a/h (FIII) have been examined at temperatures varying between 5 and 294 K.
The triplet state of carotenoids has been identified on the basis of its difference spectrum (having a peak at 515 nm) and decay kinetics (⋍ 7 µs at low temperature; accelerated by O2 at 294 K). It is formed in all of the materials studied. The quantum yield of carotenoid triplet formation in chloroplasts increases at low temperature, but less than the fluorescence yield.
In most cases the fluorescence quenching recovers approximately with the same kinetics as the decay of the carotenoid triplets. The fluorescence recovery is, however, significantly faster for chloroplasts at 730 nm. Fluorescence quenching occurs in all types of materials. The ratio of fluorescence quenching to the concentration of carotenoid triplets varies with the material, being maximum in chloroplasts and minimum in Fm particles.
We conclude that the formation of the carotenoid triplet state is not limited to a few sites in the chloroplast and that a carotenoid triplet is a quencher of chlorophyll fluorescence. A detailed comparison of carotenoid triplets and fluorescence quenching gives some information concerning the organization of the pigments in the photosynthetic apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号