首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To decrease the sensation of roughness when a tablet, which is rapidly disintegrated by saliva (rapidly disintegrating tablet), is orally taken, we prepared rapidly disintegrating tablets using microcrystalline cellulose (Avicel PH-M series), a new type of pharmaceutical excipient that is spherical and has a very small particle size (particle size, 7-32 microm), instead of conventional microcrystalline cellulose (PH-102) used in the formulation of tablets containing acetaminophen or ascorbic acid as model drugs for tableting study. Tablets (200 mg) prepared using spherical microcrystalline cellulose, PH-M-06, with the smallest particle size (mean value, 7 microm) had sufficient crushing tolerance (approximately, 8 kg) and were very rapidly, disintegrated (within 15 s) when the mixing ratio of PH-M-06 to low-substituted hydroxypropylcellulose (L-HPC) was 9:1. Sensory evaluation by volunteers showed that PH-M-06 was superior to PH-102 in terms of the feeling of roughness in the mouth. Consequently, it was found that particle size is an important factor for tablet preparation using microcrystalline cellulose. It is possible to prepare drugs such as acetaminophen and ascorbic acid (concentration of approximately 50%) in the tablet form using PH-NM-06 in combination with L-HPC as a good disintegrant at a low compression force (1-6 kN). To solve the problem of poor fluidity in the preparation of these tablets, we investigated the use of spherical sugar granules (Nonpareil, NP-101 (sucrose and starch, composition ratio of 7:3), NP-103 (purified sucrose), NP-107 (purified lactose) and NP-108 (purified D-mannitol)). Rapidly disintegrating tablets can be prepared by the direct compression method when suitable excipients such as fine microcrystalline cellulose (PH-M-06) and spherical sugar granules (NP) are used.  相似文献   

2.
The aim of this study was to prepare, using taste-masked granules, tablets which can rapidly disintegrate in saliva (rapidly disintegrating tablet), of drugs with bitter taste (pirenzepine HCl or oxybutynin HCl). The taste-masked granules were prepared using aminoalkyl methacrylate copolymers (Eudragit E-100) by the extrusion method. None of the drugs dissolved from the granules (% of dissolved, < 5%) even at 480 min at pH 6.8 in the dissolution test. However, the drugs dissolved rapidly in the medium at pH 1.2 in the dissolution test. Rapidly disintegrating tablets were prepared using the prepared taste-masked granules, and a mixture of excipients consisting of crystalline cellulose (Avicel PH-102) and low-substituted hydroxypropylcellulose (L-HPC, LH-11). The granules and excipients were mixed well (mixing ratio by weight, crystalline cellulose: L-HPC = 8:2) with 1% magnesium stearate, and subsequently compressed at 500-1500 kgf in a single-punch tableting machine. The prepared tablets (compressed at 500 kgf) containing the taste-masked granules have sufficient strength (the crushing strength: oxybutynin tablet, 3.5 kg; pirenzepine tablet, 2.2 kg), and a rapid disintegration time (within 20 s) was observed in the saliva of healthy volunteers. None of the volunteers felt any bitter taste after the disintegration of the tablet which contained the taste-masked granules. We confirmed that the rapidly disintegrating tablets can be prepared using these taste-masked granules and excipients which are commonly used in tablet preparation.  相似文献   

3.
A tableting process analyzer (TabAll) was used to predict disintegration time in the mouth of rapidly disintegrating tablet. Analyzer profiles recorded upper punch displacement and die wall force encountered during tablet processing. Changes in the mixing ratio of spherical sugar granules and microcrystalline cellulose or lactose affected upper punch displacement and die wall force profiles. Analysis of the compaction process revealed a strong association between disintegration time in the mouth and stationary time, relaxation time of upper punch displacement, and relaxation time of die wall force; disintegration time in the mouth decreased as the three parameters increased. Thus, analysis of the compaction process is useful for predicting disintegration time in the mouth of rapidly disintegrating tablet, which can assist the formulation of new rapidly disintegrating tablets.  相似文献   

4.
Lansoprazole fast-disintegrating tablets (LFDT) are a patient-friendly formulation that rapidly disintegrates in the mouth. LFDT consist of enteric-coated microgranules (mean particle size, approximately 300 microm) and inactive granules. In the design of the inactive granules, mannitol was used as a basic excipient. Microcrystalline cellulose, low-substituted hydroxypropyl cellulose (L-HPC), and crospovidone were used as binders and disintegrants. A new grade of L-HPC (L-HPC-33), with a hydroxypropoxy group content of 5.0-6.9%, was developed and it has no rough texture due to a decrease in water absorption. It was clarified that L-HPC-33 could be useful as a binder and disintegrant in rapidly disintegrating tablets. LFDT contain enteric-coated microgranules in tablet form. The enteric-coated microgranule content in LFDT affect qualities such as tensile strength, disintegration time in the mouth, and dissolution behavior in the acid stage and in the buffer stage of LFDT. The 47.4% content of the enteric-coated microgranules was selected to give sufficient tensile strength (not less than 30 N/cm(2)), rapid disintegration time in the mouth (not more than 30 s), and dissolution behavior in the acid stage and buffer stage similar to current lansoprazole capsules. Compression force affected the tensile strength and the disintegration time in the mouth, but did not affect the dissolution behavior in the acid and buffer stages.  相似文献   

5.
The aim of this article was to determine the optimal ingredients for the rapidly disintegrating oral tablets prepared by the crystalline transition method (CT method). The effect of ingredients (diluent, active drug substance and amorphous sugar) on the characteristics of the tablets was investigated. The ingredients were compressed and the resultant tablets were stored under various conditions. The oral disintegration time of the tablet significantly depended on diluents, due to differences in the penetration of a small amount of water in the mouth and the viscous area formed inside the tablet. The oral disintegration time was 10-30 s for tablets with a tensile strength of approximately 1 MPa, when erythritol, mannitol or xylitol was used as the diluent. The increase in the tensile strength of tablets containing highly water-soluble active drug substances during storage was as large as that of tablets without active drug substances, while the increase in the tensile strength of tablets containing low water-soluble active drug substances was small. It was therefore found that highly water-soluble active drug substances were more suitable for the formulation prepared by the CT method than low water-soluble active drug substances. Irrespective of the type of amorphous sugar (amorphous sucrose, lactose or maltose) used, the porosity of tablets with 1 MPa of tensile strength was 30-40%, and their oral disintegration time was 10-20 s. The optimal ingredients for rapidly disintegrating oral tablets with reasonable tensile strength and disintegration time were therefore determined from these results.  相似文献   

6.
In this study, in order to address the problems with manufacturing orally rapidly disintegrating tablets (ODT) containing functional (taste masking or controlled release) coated particles, such as the low compactability of coated particles and the rupture of coated membrane during compression, a novel ODT containing taste-masked coated particles (TMP) in the center of the tablets were prepared using one-step dry-coated tablets (OSDrC) technology. As a reference, physical-mixture tablets (PM) were prepared by a conventional tableting method, and the properties of the tablets and the effect of compression on the characteristics of TMP were evaluated. OSDrC was found to have higher tensile strength and far lower friability than PM, but the oral disintegration time of OSDrC is slightly longer than that of PM following high compression pressure. Consequently, OSDrC approaches the target tablet properties of ODT, whereas PM does not. The deformation of TMP in OSDrC due to compression is slight, and the release rate of acetaminophen (AAP) from OSDrC is the same as from TMP. However, TMP on the surface of PM are considerably deformed, and the release rate of AAP from PM is faster than from TMP. These findings suggest that OSDrC technology is a useful approach for preparing ODT containing functional coated particles. Furthermore, we demonstrate that the elastic recovery of tablets can affect differences in the properties of OSDrC, PM and placebo tablets (PC).  相似文献   

7.
Orally disintegrating tablets (ODT) are gaining popularity over conventional tablets due to their convenience in administration and suitability for patients having dysphagia. Moreover no water is required for swallowing the tablets and hence suitable for geriatric, pediatric and traveling patients. The purpose of this study is to assess the suitability of spray dried excipient base in the formulation of ODTs of Valdecoxib (low aqueous solubility) and Metoclopramide (high aqueous solubility). Spray dried excipient base was prepared using Scientech spray drier. Super disintegrants (such as Ac-Di-Sol, Kollidon CL, sodium starch glycolate), diluent (mannitol) alongwith sweetening agent (aspartame) were used in the formulation of tablets. The tablets were evaluated for hardness, friability, water absorption ratio, disintegration time (DT) and in vitro drug release. Using the same excipients, the tablets were prepared by direct compression and were evaluated in the similar way. Maximum drug release and minimum DT were observed with Kollidon CL excipient base as compared to tablets prepared by direct compression, showing the superiority of the spray dried excipient base technique over direct compression technique.  相似文献   

8.
In this study, we aimed to design orally disintegrating tablets by employing a formulation design approach that enables the production of such tablets in the same facilities used for the production of solid dosage forms on an industrial scale. First, we examined the relationships between the types of binders used in the tablets and the properties of orally disintegrating tablets prepared by the wet granulation method. Results revealed that partly pregelatinized starch is a relatively suitable binder for orally disintegrating tablets as it also serves as a disintegrant. Next, we employed a central composite design for 2 factors, namely, corn starch and partly pregelatinized starch, in order to design granules suited for orally disintegrating tablets composed of D-mannitol, corn starch or partly pregelatinized starch. The effects of these 2 factors on 3 types of responses, namely, 50% granule size, compressing index and disintegrating index, were analyzed with a software package, and responses to changes in the factors were predicted. This study investigated the effects of binder type and binder content in orally disintegrating tablets, and provided evidence that the binder exerts a strong influence on tablet properties, and is therefore an important component of orally disintegrating tablets.  相似文献   

9.
Amisulpride (AMI) is an atypical antipsychotic having poor aqueous solubility and poor oral bioavailability. Inclusion complex between AMI and gamma cyclodextrin (γ-CD) was prepared by kneading method using 1:1 stoichiometry. Solubility of AMI was enhanced by 3.74 times after inclusion complex formation. Amisulpride–γ-cyclodextrin inclusion complex was characterized by FTIR, DSC and XRD techniques. Further sustained release granules of Amisulpride–γ-cyclodextrin inclusion complex (CDSR) were prepared by treating complex with molten stearic acid. Drug release from CDSR granules was sustained up to 12 h with 100 % stearic acid proportion. The integrity of AMI–γ-CD inclusion complex in lipid phase was assessed by XRD study. Finally orodispersible tablets of CDSR granules (OD-CDSR) were prepared using Ac-Di-Sol and microcrystalline cellulose. Disintegration time was assessed by both pharmacopoeial and modified method. Optimized formulation was rapidly disintegrated within 25 s. Thus solubility enhancement and sustained release of AMI was achieved by orodispersion of CDSR granules for improvement of patient compliance.  相似文献   

10.
The aims of the present research were to mask the intensely bitter taste of sumatriptan succinate and to formulate orally disintegrating tablets (ODTs) of the taste masked drug. Taste masking was performed by coating sumatriptan succinate with Eudragit EPO using spray drying technique. The resultant microspheres were evaluated for thermal analysis, yield, particle size, entrapment efficiency and in vitro taste masking. The tablets were formulated by mixing the taste masked microspheres with different types and concentrations of superdisintegrants and compressed using direct compression method followed by sublimation technique. The prepared tablets were evaluated for weight variation, thickness, hardness, friability, drug content, water content, in vitro disintegration time and in vitro drug release. All the tablet formulations disintegrated in vitro within 37-410 s. The optimized formulation containing 5% Kollidon CL-SF released more than 90% of the drug within 15 min and the release was comparable to that of commercial product (Suminat?). In human volunteers, the optimized formulation was found to have a pleasant taste and mouth feel and disintegrated in the oral cavity within 41 s. The optimized formulation was found to be stable and bioequivalent with Suminat?.  相似文献   

11.
We attempted the development of rapid oral disintegration tablets by direct compression using co-ground mixture of D-mannitol and crospovidone. The co-ground mixture was prepared with a vibration rod mill. The tablets were formed by compression using a single punch-tableting machine after addition of the co-ground mixture to non-ground D-mannitol, crospovidone and magnesium stearate. Regarding the properties of tablets, hardness and the time of disintegration were measured. The particle diameter and specific surface area of the co-ground mixture were measured. The tablets manufactured from a physical mixture of 30% (w/w) co-ground mixture of D-mannitol and crospovidone (mixed ratio 9 :1) with 65.5% (w/w) of non-ground mannitol, 4% (w/w) of crospovidone, and 0.5% (w/w) of magnesium stearate had good properties for rapidly disintegrating tablets in the oral cavity. They showed the hardness of 4.9 kg and disintegration time of 33 s. We found that adding co-ground mixture of D-mannitol and crospovidone is useful in enhancing hardness of the tablets that could not be achieved by addition of their individually ground mixture. The improvement in the hardness of the tablets was also observed when other saccharides and disintegrants were used. This method was proved to be applicable in the manufacture of tables of ascorbic acid, a water-soluble drug and nifedipine, a slightly water soluble drug; and the dissolution rate of nifedipine from the tablets in water was remarkably improved. The particle sizes of D-mannitol in the co-ground mixture were smaller than that of the individually ground mixture, resulting in a larger specific surface area of the co-ground mixture than that of the individually ground mixture. Therefore, it was presumed that crospovidone acted as a grinding assistant for D-mannitol in the co-grinding process, enhancing the hardness of tablets by increasing the contact area among powder particles.  相似文献   

12.
The salting-out taste-masking system is a multiparticulate system consisting of a drug core, a salting-out layer containing salts and water-soluble polymers, and a water-penetration control layer containing water-insoluble materials. The system generates a long lag time (time when released drug is less than 1%) for numbness masking, and a subsequent immediate drug release for high bioavailability. Aiming to contain the system and drugs that cause numbness in oral disintegrating tablets, the system was optimized to reduce the particle size and contain drugs with high water solubility in this study. The amount of coating on the layers, the coating solvent, and the positioning of the components were also optimized. The findings in this study will lead to the provision of numbness-masked oral disintegrating tablets to patients.  相似文献   

13.
Three processed lactose-cellulose blends of similar composition, particle size and true density were compared as direct compression excipients: one was prepared by dry granulation, one by extrusion-spheronization, and the commercial product Cellactose. Differences among their flow properties depended solely on their different sphericities. Unlike those of the other blends, Cellactose particles exhibited numerous macropores. The mean yield pressures of all three blends were similar to those of direct compression lactoses. Cellactose tablets prepared at a punch pressure that largely eliminated macropores (pores >1 microm) had better mechanical properties but much poorer disintegration than tablets of the other blends prepared at the same punch pressure. However, the tensile strength and disintegration time of Cellactose tablets both fell rapidly as macropore volume was increased by reducing punch pressure, while the enthalpy of wetting/dissolution rose. The strength and water-resistance of well-compacted Cellactose tablets is attributed to the spatial distribution of lactose and cellulose in Cellactose particles, rather than to beta-lactose content or extra-particular structural features.  相似文献   

14.
Telmisartan (anti-hypertensive) is insoluble in water; hence the drug may be slowly or incompletely dissolved in the gastro intestinal tract. So the rate of dissolution and therefore its bioavailability is less (bioavailability 42%). In the present study an attempt has been made to prepare immediate release tablets of telmisartan by using Polyplasdone XL-10 (Crosspovidone) at intragranular, extragranular and partly intra and extragranular level of addition to increase the rate of drug release from dosage form to increase the dissolution rate and hence its bioavailability. The prepared granules and tablets were evaluated for their physiochemical properties and in-vitro dissolution study was conducted for the prepared tablets. It was concluded that the immediate release tablets with proper hardness, disintegration time and with increase rate of dissolution can be made using Polyplasdone XL-10. Formuation-10 (F10) was selected for stability study and the in-vitro dissolution study showed that was no difference in percent of drug released between initial and sixth month sample.  相似文献   

15.
In this study matrices were prepared from particles of poorly water-soluble drugs such as acetaminophen (Act) to determine the drug release rate from these matrix particles. The matrix particles were prepared by incorporating drugs into chitosan powder (Cht, carrier) using a spray-drying method. The formation of composite particles was confirmed by scanning electron microscopic (SEM) analysis. The matrix particles prepared by spray-drying were spherical with a smooth surface. The crystallinity of acetaminophen in the composite particles was evaluated by powder X-ray diffraction and differential scanning calorimetry (DSC). The degree of crystallinity of acetaminophen in the matrix particles decreased with a reduction in the weight ratio of acetaminophen relative to the carrier. These results indicate that a solid dispersion of acetaminophen in chitosan forms matrix particles. The interaction between acetaminophen and chitosan was also investigated by FT-IR analysis. FT-IR spectroscopy of the acetaminophen solid dispersion suggested that the carbonyl group of acetaminophen and the amino group of chitosan formed a hydrogen bond. There were some differences at pH levels of 1.2 and 6.8 in the release of acetaminophen from the physical mixture compared to the matrix particles. At pH 1.2, the release from the matrix particles (Act : Cht=1 : 5) was more sustained than from the physical mixtures. The 70% release time, T70, of acetaminophen from the matrix particles (Act : Cht=1 : 5) increased in pH 1.2 fluid by about 9-fold and in pH 6.8 fluid by about 5-fold compared to crystalline acetaminophen. These results suggest that matrix particles prepared by spray-drying are useful as a sustained release preparation.  相似文献   

16.
A simple, sensitive and rapid high performance liquid chromatographic method was developed and validated for the simultaneous determination of potassium clavulanate and cefadroxil in synthetically prepared tablets. Chromatographic separation and detection was carried out on a C-18 column using 0.05 M potassium dihydrogen phosphate buffer (pH 5.0) and acetonitrile in the ratio of 94: 06 (v/v) as mobile phase at wavelength of 225 nm. The method was linear in the concentration range of 3.75–22.5 μg/mL for potassium clavulanate and 15–90 μg/mL for cefadroxil. The flow rate was 1.0 mL/min and the total analysis time was less than 10 min. The mean recoveries was found to be greater than 99% with RSD less than 1.0%. The proposed method was validated by performing linearity, recovery, specificity, robustness, LOD/LOQ and within-day and between-day precision. The chromatographic results obtained from the synthetically prepared tablets show that the method is highly precise and accurate for the simultaneous quantitation of clavulanate potassium and cefadroxil.  相似文献   

17.
The disintegratability of tablets prepared from two types of solid dispersions containing the water-soluble polymer TC-5 and the enteric polymer HP-55 as an excipient were compared. The disintegratability was better in the tablets of solid dispersions containing non-water-soluble HP-55 than those containing TC-5. In consideration of the dissolubility of solid dispersions containing HP-55, the mean diameter of the solid dispersion (coating powder) must be controlled to 120 microm or less, but as this markedly increases the adhesion/aggregation tendency of the particles (angle of repose: 47 degrees ), control of the adhesion/aggregation tendency emerged as another problem. Therefore, surface-modification was performed in a high-speed agitating granulator using 0.1% light anhydrous silicic acid as a surface modifier, and marked improvement in the flowability was observed. This made continuous tableting using a rotary tablet machine possible even with the poorly flowable solid dispersions. Also, in tableting of the solid dispersions, no recrystallization of amorphous itraconazole by the tableting pressure was observed, and the tablets maintained satisfactory dissolubility. Moreover, it was possible to obtain the rapidly disintegrating tablets with very satisfactory properties, i.e., a tablet hardness of 30 N or higher and a disintegration time of 30 s or less, by the addition of croscarmellose as a disintegrant at 2% to the surface-modified solid dispersion and selection of the tableting pressure at 4.5 kN.  相似文献   

18.
The purpose of this study was to demonstrate the usefulness and broad-applicability of a simple disintegration test method for orally disintegrating tablets (ODT). Eight types of commercial famotidine 20 mg orally disintegrating tablets with different physical properties (formulation, manufacturing method, tablet weight, shape, diameter, thickness, etc.), were used. Disintegration times of these tablets were evaluated employing human sensory test, conventional disintegration test, and the new proposed disintegration test. The human sensory test was performed in 5 healthy volunteers. In the conventional disintegration test, the disintegration apparatus described in the Japanese Pharmacopeia (JP 1(st)) was used. Our proposed new test which is characterized by a rotating shaft with a low weight (10, 15 g) and rotation speed (10, 25, 50 rpm) was evaluated using tablets with and without storage under severe conditions (60 degrees C/75%RH for 1 week). The disintegration times of famotidine 20 mg orally disintegrating tablets in human sensory test varied from 9 to 32 s. In contrast, disintegration times in the conventional test were prolonged to over 300 s. Disintegration times in the new proposed test were close to those in human sensory test. Especially, when the new test was conducted with 15 or 10 g weight and 25 rpm, the slope (human sensory test vs. new proposed test) was almost 1. We were able to demonstrate that the new proposed test was useful to estimate the actual human disintegration time.  相似文献   

19.
Combination preparation plays an important role in clinical treatment because of its better and wider curative synergism and weaker side effects. However, the existence of incompatibility between active ingredients or between active ingredients and excipients presents a serious obstacle in the preparation of such combination solid dosage forms. In this study, aspirin and ranitidine hydrochloride, between which there existed a chemical interaction, were selected as model drugs. Aspirin powders without any additives were granulated with hydroxypropyl methyl cellulose (HPMC) water solution as a binder using a Wurster coating apparatus and the operation conditions were optimized by Artificial Neural Network (ANN) analysis. Under these conditions, the aspirin granules prepared showed good flowability and compressibility. On the other hand, ranitidine hydrochloride was coated with Aquacoat (ethyl cellulose aqueous dispersion) after preliminary granulation with the Wurster coating apparatus. The aspirin granules and coated ranitidine hydrochloride particles were compressed into tablets with suitable excipients. The combination tablets showed good dissolution, content uniformity and improved stability of active ingredients.  相似文献   

20.
We attempted to make the rapidly dissolving tablet (Tab) containing solid dispersion particles (SD) with indomethacin (IMC) and porous silica (Sylysia350) as carrier prepared by using spray-drying technique. Rapidly dissolving tablet was formulated with mannitol as a diluent and low substituted hydroxypropylcellulose (L-HPC) or partly pre-gelatinized starch (PCS) as a disintegrant. The percent dissolved from Tab (SD) was higher than that of tablet containing physical mixture (PM) at 20 min. Nearly 100% of drug in Tab (SD) was dissolved within 60 min, while the drug dissolution of Tab (PM) was not completed at the same time period. In addition, the tensile strength of Tab (SD) was much higher than that of Tab (PM). Adding L-HPC in Tab (SD) (Tab (SD-L-HPC)), the percent dissolved from Tab (SD-L-HPC) at 5 min became much higher than that from Tab (SD). The dissolution profile of IMC from Tab (SD-L-HPC) was almost the same irrespective of the compression pressure, while the tensile strength of tablet increased with increasing the compression pressure. In comparing the compaction property of these tablets by observing the ratio of residual die wall pressure (RDP) to maximum die wall pressure (MDP) (RDP/MDP), it was found that addition of L-HPC in the tablet formulation improved compactibility. In case that PCS was formulated as disintegrant, Tab (SD-PCS), similar improvement in the dissolution profile and tensile strength was observed, though the dissolution rate of IMC from Tab (SD-PCS) was slightly lower than that from Tab (SD-L-HPC) irrespective of the compression pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号