首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper aims at investigating the influence of acoustic streaming induced by low-frequency (24 kHz) ultrasound irradiation on mass transfer in a two-phase system. The main objective is to discuss the possible mass transfer improvements under ultrasound irradiation. Three analyses were conducted: i) experimental analysis of mass transfer under ultrasound irradiation; ii) comparative analysis between the results of the ultrasound assisted mass transfer with that obtained from mechanically stirring; and iii) computational analysis of the systems using 3D CFD simulation. In the experimental part, the interactive effects of liquid rheological properties, ultrasound power and superficial gas velocity on mass transfer were investigated in two different sonicators. The results were then compared with that of mechanical stirring. In the computational part, the results were illustrated as a function of acoustic streaming behaviour, fluid flow pattern, gas/liquid volume fraction and turbulence in the two-phase system and finally the mass transfer coefficient was specified. It was found that additional turbulence created by ultrasound played the most important role on intensifying the mass transfer phenomena compared to that in stirred vessel. Furthermore, long residence time which depends on geometrical parameters is another key for mass transfer. The results obtained in the present study would help researchers understand the role of ultrasound as an energy source and acoustic streaming as one of the most important of ultrasound waves on intensifying gas-liquid mass transfer in a two-phase system and can be a breakthrough in the design procedure as no similar studies were found in the existing literature.  相似文献   

2.
In this paper, the results of an experimental investigation of the distribution of local coefficients of mass transfer on a pipe wall for a flow of a two-phase gas-liquid mixture with a turn of 90° are presented. The mass transfer coefficients were measured by using an electrodiffusion method. It has been shown that the distribution of local mass transfer coefficients on the inner surface of a curvilinear channel is nonuniform both in length and along the perimeter and depends on the content of gas in the two-phase flow.  相似文献   

3.
Results of an experimental investigation of heat and mass transfer and wall shear stress at gas-liquid flow in a vertical tube are presented. Local wall shear stress and mass transfer coefficients were measured by an electrochemical method. Experiments were performed in the range of Reynolds number variation with respect to liquid Rci, = 8.5 × 103-5.4 × 104, gas Reg = 3 × 103-1.4 × 105, pressure 0.1-1 MPa. The relationship between heat and mass transfer and wall shear at gas-liquid flows is shown to exist. The results of measuring heat and mass transfer coefficients are generalized by formulas applied to calculate heat and mass transfer in single-phase turbulent flow.  相似文献   

4.
Response surface methodology (RSM) was employed to optimize ultrasound/ultraviolet-assisted oxidative desulfurization in an airlift reactor. Ultrasonic waves were incorporated in a novel-geometry reactor to investigate the synergistic effects of sono-chemistry and enhanced gas-liquid mass transfer. Non-hydrotreated kerosene containing sulfur and aromatic compounds was chosen as a case study. Experimental runs were conducted based on a face-centered central composite design and analyzed using RSM. The effects of two categorical factors, i.e., ultrasound and ultraviolet irradiation and two numerical factors, i.e., superficial gas velocity and oxidation time were investigated on two responses, i.e., desulfurization and de-aromatization yields. Two-factor interaction (2FI) polynomial model was developed for the responses and the desirability function associate with overlay graphs was applied to find optimum conditions. The results showed enhancement in desulfurization ability corresponds to more reduction in aromatic content of kerosene in each combination. Based on desirability approach and certain criteria considered for desulfurization/de-aromatization, the optimal desulfurization and de-aromatization yields of 91.7% and 48% were obtained in US/UV/O3/H2O2 combination, respectively.  相似文献   

5.
The effect of ultrasound on the leaching process, in which Geniposide is leached from the Gardenia fruit by deionized water at 20 degrees C, was investigated. The phase equilibrium and the dynamics were measured at static, stirring, and ultrasonically assisted conditions, respectively. The experimental results show that the extraction yield of Geniposide with ultrasound at 0.1533 W cm(-2), is increased by 16.5%, in comparison with that without ultrasound when the ratio of the solvent volume to the fruit weight is 40 ml/g. A model for mass transfer, based on the intraparticle diffusion and the external mass transfer, was developed. And the dynamic curves calculated by the model are in a good agreement with the experimental data. The external mass transfer coefficient k(f)/R and intraparticle diffusion coefficient D(e)/R2 were obtained by fitting of the experiment data. The external mass transfer coefficient with ultrasound at 0.1533 W cm(-2) is 1.63 times higher than that in static process, and the intraparticle diffusion coefficient with ultrasound at 0.1533 W cm(-2) is 3.25 times higher than that in static process.  相似文献   

6.
The aim of this study was to assess the impact of ultrasound on two subsequent processes – initial osmotic dehydration and convective drying of kiwifruit (Actinidia deliciosa). The effect of ultrasound (at a frequency of 25 kHz) was assessed both in terms of process kinetics and product quality. During the study, three different osmotic agents were used – erythritol, sorbitol, and sucrose – in an aqueous solution at a concentration of 50% (w/w). The essential kinetic parameters were analyzed – water loss and increase of dry matter during osmotic dehydration, and evolution of moisture content and temperature of samples during convective drying (drying curves). Product quality was assessed on the basis of color, water activity, and content of relevant bioactive components – polyphenols and carotenoids. It was found that the application of ultrasound during osmotic dehydration resulted in higher water loss and solid gain. This surely results from the phenomena occurring during the propagation of the elastic waves in the liquid medium (mainly related to cavitation) and enhancement of the mass transfer. The use of ultrasound during convective drying also had a positive effect on the kinetics of this process. In most cases, during the ultrasonically assisted drying operations, a significant increase in drying rate was observed, leading to a reduction in drying time. This may be due to the intensification of both heat and mass transfer as a result of the mechanical and thermal effects of ultrasound. The assessment of product quality showed that the use of sugar alcohols was a good alternative to sucrose, and ultrasound-assisted convective drying increased the retention of valuable carotenoids and polyphenols. Moreover, in all dried kiwifruit slices, water activity was below 0.6, which can guarantee the microbiological stability of the tested samples.  相似文献   

7.
以汽油-压缩空气为介质,对气液两相流体纵掠螺距为200mm的螺旋扁管管束的摩擦压降进行了实验研究。讨论并分析了质量含气率、混合物质量流速对摩擦压降的影响。提出了两种预测两相摩擦压降的方法:全液相摩擦乘子、L-M关系式。  相似文献   

8.
气液两相流压力波色散特性实验研究   总被引:1,自引:0,他引:1  
设计了可调频式压力扰动源的气液两相流压力波实验装置,实验研究了垂直上升管内气液两相流泡状流、弹状流压力波的色散规律。实验结果表明,对泡状流,在实验范围内,压力波的传播速度及其衰减跟扰动频率有关,随着扰动频率的增加,波速及其衰减都增加;工质的流速对压力波的色散特性没有影响。结合数值模拟结果,验证了泡状流压力波色散特性的临界频率现象,即高于临界频率,压力波色散特性消失,本文分析了相应的物理机制。对弹状流,压力波同样具有典型的色散特性,已有研究结果还不能预测其色散规律。  相似文献   

9.
Due to the tunability in mass transfer, solvation and solubility, gas-expanded liquids show advantages over traditional organic solvents in many characteristics. Ultrasonication is a commonly used method to promote heat and mass transfer. The introduction of ultrasonic technology into the gas-expanded liquid system can promote the polymerization of polymer monomers, enhance extraction efficiency, and control the growth size of nanocrystals, etc. Although acoustic cavitation has been extensively explored in aqueous solutions, there are still few studies on cavitation in organic liquids, especially in gas-expanded liquid systems. In this article, the development of cavitation bubble cloud structure in CO2-expanded N, N-dimethylformamide (DMF) was observed by a high-speed camera, and the cavitation intensity was recorded using a spherical hydrophone. It was found that the magnitude of the transient cavitation energy was not only related to input power, but also closely related to CO2 content. The combination of ultrasound (causing a rapid alternation of gas solubility) and gas-expanded liquid system (causing a decrease in viscosity and surface tension of liquids) is expected to provide a perfect platform for high-speed mass transfer.  相似文献   

10.
Present work analyzes the flow hydrodynamics and mass transfer mechanisms in double Rushton and CD-6 impeller on wide range (0.0075–0.25 m/s) of superficial gas velocity (v g) in a gas-liquid phase bioreactor by employing computational fluid dynamics (CFD) technique. The volume averaged velocity magnitude and dissipation rate are found higher with increasing superficial gas velocity. Higher relative power draw (P g/P 0) is predicted in CD-6 than the Rushton impeller but no significant difference in volume averaged mass transfer coefficient (k L a) observed between these two types of impeller. The ratio of power draw with mass transfer coefficient has been found higher in CD-6 impeller (25–50 %) than the Rushton impeller.  相似文献   

11.
Zhang P  Yang M  Lu X  Han P  Wang Y 《Ultrasonics》2006,44(Z1):e393-e395
Baeyer-Villiger oxidation of cyclohexanone to epsilon-caprolactone was studied in a new type reactor--the airlift loop sonochemical reactor. The reactor plays a synergistic effect of sonochemsity and higher oxygen transfer rate. The influences of ultrasound intensity, reaction temperature, the molar ratio of benzaldehyde to cyclohexanone and oxygen gas flow rate on the conversion and selectivity of cyclohexanone were investigated and discussed. Under ultrasound, the amount of benzaldehyde can be reduced from 75% to 67%. Ultrasound not only intensified the rates of reactions but also increased the yield of product. The optimized operation conditions are listed as follows: the reaction temperature is 30 degrees C, the molar ratio of cyclohexanone to benzaldehyde is 1:2, the oxygen gas flow rate is 1.15 cm s(-1), and ultrasonic irradiations 2h at 40 kHz, 2.25 W cm(-2). Under the optimum operation conditions, the average molar yield of epsilon-caprolactone comes up to 87.7%.  相似文献   

12.
Ultrasonic drying of foodstuff in a fluidized bed: Parametric study   总被引:1,自引:0,他引:1  
The application of high power ultrasound for dehydration of porous materials may be very effective in processes in which heat-sensitive materials such as foodstuffs have to be treated. In fact, high-intensity ultrasonic vibrations are capable of increasing heat and mass transfer processes in materials. The application of ultrasonic energy can be made alone or in combination with other kind of energy such as hot-air. In this case, ultrasound helps in reducing temperature or treatment time. The aim of this work is to study the effect of air flow rate, ultrasonic power and mass loading on hot-air drying assisted by a new power ultrasonic system. The drying chamber is an aluminium vibrating cylinder, which is able to create a high intensity ultrasonic field in the gas medium. To that purpose the chamber is driven at its centre by a power ultrasonic vibrator at 21.8 kHz. Drying kinetics of carrot cubes and lemon peel cylinders were carried out at 40 degrees C for different air velocities, with and without ultrasound. The results show that the effect of ultrasound on drying rate is affected by air flow rate, ultrasonic power and mass loading. In fact, at high air velocities the acoustic field inside the chamber is disturbed and the effect of ultrasound on drying kinetics diminishes.  相似文献   

13.
Ultrasound has been proven to enhance the mass transfer process and impact the fabrication of anodic aluminum oxide (AAO). However, the different effects of ultrasound propagating in different media make the specific target and process of ultrasound in AAO remain unclear, and the effects of ultrasound on AAO reported in previous studies are contradictory. These uncertainties have greatly limited the application of ultrasonic-assisted anodization (UAA) in practice. In this study, the bubble desorption and mass transfer enhancement effects were decoupled based on an anodizing system with focused ultrasound, such that the dual effects of ultrasound on different targets were distinguished. The results showed that ultrasound has the dual effects on AAO fabrication. Specifically, ultrasound focused on the anode has a nanopore-expansion effect on AAO, leading to a 12.24 % improvement in fabrication efficiency. This was attributed to the promotion of interfacial ion migration through ultrasonic-induced high-frequency vibrational bubble desorption. However, AAO nanopores were observed to shrink when ultrasound was focused on the electrolyte, accompanied by a 25.85 % reduction in fabrication efficiency. The effects of ultrasound on mass transfer through jet cavitation appeared to be the reason for this phenomenon. This study resolved the paradoxical phenomena of UAA in previous studies and is expected to guide AAO application in electrochemistry and surface treatments.  相似文献   

14.
Upward and downward two-phase heat and mass transfer has been considered in the present paper. The heat and mass transfer with the condenser located below the evaporator has been obtained by inserting an accumulator tank in the liquid line of a loop thermosyphon and enforcing a pressure pulsation. In previous papers these heat transfer devices have been called pulsated two phase thermosyphons (PTPT). A mini PTPT has been experimentally investigated. It has shown a stable periodic heat transfer regime weakly influenced by the position of the condenser with respect to the evaporator. In contrast a classical loop mini thermosyphon (diameter of connecting pipes 4 mm) did not achieve a stable functioning for the investigated level differences between evaporator and condenser lower than 0.37 m. The present study shows that the functioning of a PTPT device does not directly depend on the level difference or the presence of noncondensable gas. In order to obtain a natural circulation in mini or micro loops, a periodically operating heat transfer regime should therefore be considered.  相似文献   

15.
In our study, SiC foam material has been applied to produce corrugated structured packing in distillation. Three kinds of novel packing with different pore size and corrugation angle have been developed and tested in pilot scale, respectively, to investigate the influence of structural parameters on the performance of SiC foam corrugated structured packing. Hydraulic parameters including pressure drop for dry and wet packing and flooding velocity are determined in an organic glass tower of 600 mm internal diameter, using gas–water. Mass transfer efficiency (HETP) is measured by total reflux experiments in a column with a 310 mm diameter at atmospheric pressure, using a mixture of n-heptane and cyclohexane. The experimental results indicate that SFP-500YD3 with a smaller pore size has higher dry and wet pressure drop, lower flooding velocity and higher mass transfer efficiency compared with SFP-500Y-D5. SFP-500X-D3 with a 30° corrugation angle exhibits lowest pressure drop and highest separation efficiency among all three packings. This study reveals the influence of structural characteristics of SiC foam corrugated structured packing on its performance.  相似文献   

16.
The efficacy of power ultrasound of 20 kHz in enhancing the volumetric mass transfer coefficient was investigated in this study. Breakage and dissolution of sparingly soluble benzoic acid dispersed in either water or 24% aqueous glycerol was monitored as a function of time and ultrasound power input. Particle size measurements were carried out at intermediate times during the experiment to estimate the mean particle size and surface area. Linear combination of lognormal distributions was found to fit the experimental particle size distribution data. The De Brouckere mean diameters (d43) obtained from the particle size distributions decreased with increase in the ultrasonic power level. Empirical correlations were developed for the evolution of surface area as a function of ultrasonic energy input per unit mass. The effect of ultrasound on the intrinsic mass transfer coefficient (kc) could be decoupled from the volumetric mass transfer coefficient (kca) as the surface area was also estimated. Different approaches involving either constant or variable intrinsic mass transfer coefficients were employed when carrying out the delineation. Mass transfer rates were enhanced due to both higher ultrasound induced intrinsic convective mass transfer coefficient and additional surface area created from particle breakage. To delineate the effects of particle breakage from solid dissolution, experiments were also carried out under non-mass transfer conditions by pre-saturating the solvents with benzoic acid. Both the solid-liquid systems examined in the present study attained saturation concentration when the ultrasonic energy input per unit mass was approximately 60 kJ/kg, irrespective of the ultrasonic power level setting.  相似文献   

17.
为实现高湿环境下脱硫塔内复杂烟气的高效除尘,设计了一种预混式双流体静电雾化喷嘴,并对其喷雾特性及荷电性能进行了试验研究.试验测量了喷雾粒径、锥角和荷质比等参数,通过量纲分析,得到了该喷嘴粒径分布与雷诺数Re的数学模型.试验结果表明:喷雾粒径随气液比(GLR)的增加呈指数减小,当气液比小于0.1时,喷雾粒径随气液比增加迅...  相似文献   

18.
This article directly investigates the effect of a cooling medium's coolant temperature on the condensation of the refrigerant R-134a. The study presents an experimental investigation into condensation heat transfer, vapor quality, and pressure drop of R-134a flowing through a commercial annular helicoidal pipe under the severe climatic conditions of a Kuwait summer. The quality of the refrigerant is calculated using the temperature and pressure obtained from the experiment. Measurements were performed for refrigerant mass fluxes ranging from 50 to 650 kg/m2s, with a cooling water flow Reynolds number range of 950 to 15,000 at a fixed gas saturation temperature of 42°C and cooling wall temperatures of 5°C, 10°C, and 20°C. The data shows that with an increase of refrigerant mass flux, the overall condensation heat transfer coefficients of R-134a increased, and the pressure drops also increased. However, with the increase of mass flux of cooling water, the refrigerant-side heat transfer coefficients decreased. Using low mass flux in a helicoidal tube improves the heat transfer coefficient. Furthermore, selecting low wall temperature for the cooling medium gives a higher refrigerant-side heat transfer coefficient.  相似文献   

19.
离心泵叶轮内气液两相三维流动数值研究   总被引:7,自引:0,他引:7  
本文采用欧拉模型对离心泵叶轮内气液两相泡状流动进行了数值模拟。分析了叶轮内压力、速度等的分布规律,发现在靠近轮盖侧吸力面入口附近压力较低,气液两相速度较大,气泡容易凝聚而导致含气率较高;靠近轮盘处含气率较低。分析了不同进口截面含气率对叶轮内部两相流动的影响机理,建立了进口截面含气率对内部相态分离及泵外特性的影响关系。  相似文献   

20.
翅片管气化器管内相变传热流动数值模拟   总被引:1,自引:1,他引:0  
采用Fluent多相流混合物模型,通过用户自定义程序(UDF)实现了液氮相变模拟,模拟了不同进口流速对翅片管气化器管内流体换热量、压力降、含气率及汽化体积的影响,并分析了各参数随进口流速改变而变化的原因。由数值模拟可知,翅片管内流体进出口焓差、含气率及单位质量汽化体积随进口流速的增加而减少,而压力降和总换热量随进口流速的增加而增大,其中压力降增大的主要原因是由加速压降引起。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号