首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An adaptation of the classical Graetz methodology is applied to investigate the thermal development of forced convection in a parallel plate channel or a circular tube filled by a porous medium saturated by a rarefied gas, with walls held at constant heat flux. The Brinkman model is employed. The analysis leads to expressions for the local Nusselt number Nu as functions of the dimensionless longitudinal coordinate and the Darcy number. It is found that an increase in the velocity slip coefficient generally increases Nu by a small or moderate amount (but the circular tube at large Darcy number is an exception) while an increase in the temperature slip coefficient reduces Nu by a more substantial amount. These trends are uniform as the longitudinal coordinate varies.  相似文献   

2.
An analytical study is performed on steady, laminar, and fully developed forced convection heat transfer in a parallel plate channel with asymmetric uniform heat flux boundary conditions. The channel is filled with a saturated porous medium, and the lower and upper walls are subjected to different uniform heat fluxes. The dimensionless form of the Darcy–Brinkman momentum equation is solved to determine the dimensionless velocity profile, while the dimensionless energy equation is solved to obtain temperature profile for a hydrodynamically and thermally fully developed flow in the channel. Nusselt numbers for the lower and upper walls and an overall Nusselt number are defined. Analytical expressions for determination of the Nusselt numbers and critical heat flux ratio, at which singularities are observed for individual Nusselt numbers, are obtained. Based on the values of critical heat flux ratio and Darcy number, a diagram is provided to determine the direction of heat transfer between the lower or upper walls while the fluid is flowing in the channel.  相似文献   

3.
A modified Graetz methodology is applied to investigate the thermal development of forced convection in a circular duct filled by a saturated porous medium, with walls held at constant temperature, and with the effects of longitudinal conduction and viscous dissipation included. The Brinkman model is employed. The analysis leads to expressions for the local Nusselt number, as a function of the dimensionless longitudinal coordinate and other parameters (Darcy number, Péclet number, Brinkman number).  相似文献   

4.
Forced convection heat transfer in fully developed flows of viscous dissipating fluids in concentric annular ducts is analyzed analytically. Special attention has been paid to the effect of the viscous dissipation. Two different cases of the thermal boundary conditions are considered: uniform heat flux at the outer wall and adiabatic inner wall (Case A) and uniform heat flux at the inner wall and adiabatic outer wall (Case B). Solutions for the velocity and temperature distributions and the Nusselt number are obtained for different values of the aspect ratio and the Brinkman number. The present analytical results for the case without the viscous dissipation effect are compared with those available in the literature and an excellent agreement is observed. To cite this article: M. Avc?, O. Ayd?n, C. R. Mecanique 334 (2006).  相似文献   

5.
The effect of heat generation on the flow characteristics of the fully developed forced convection through a porous duct is investigated analytically on the basis of Brinkman?CForchheimer model. The duct is bounded by two isoflux plates. For solving momentum equation a regular asymptotic expansion method is used for hyper-porous materials and a matched asymptotic expansion method is used for low-porous materials. This solution permits a uniform solution for the energy equation to find the temperature distribution as well as Nusselt number. A numerical solution is found here to check the accuracy of the asymptotic one.  相似文献   

6.
The unsteady extrusion of a viscoelastic film from an annular and axisymmetric die is examined. External, elastic, viscous and inertia forces deform the film, which is simultaneously cooled via forced convection to the ambient air. This moving boundary problem is solved by mapping the liquid/air interfaces onto fixed ones and by employing a regular perturbation expansion for all the dependent variables. The ratio of the film thickness to its inner radius at the exit of the die is used as the small parameter in the perturbation expansion. The fluid mechanical aspects of the process depend on the Stokes, Deborah, Reynolds, and Capillary numbers. The heat transfer in the film and to the environment gives rise to four additional dimensionless groups: the Peclet, Biot and Brinkman numbers and the activation energy, which determines the temperature dependence of fluid viscosity and elasticity. A variable heat transfer coefficient is also considered. For typical fluid properties and process conditions, the Peclet number is very large. In this case it is the ratio of the Biot to the Peclet number, the Stanton number, which arises in the energy conservation equation. It is shown that film cooling becomes important when the Stanton number and/or the activation energy are in the high-end of their typical values. In such cases, the cooling of the parison leads to a more uniform flow and shape for the film. The influence on the process of a variable heat transfer coefficient and the Brinkman number is small. Received: 7 April 1999/Accepted: 10 August 1999  相似文献   

7.
The simultaneous effect of local thermal nonequilibrium (LTNE) and magnetic field dependent (MFD) viscosity on thermal convective instability in a horizontal ferrofluid saturated Brinkman porous layer in the presence of a uniform vertical magnetic field is studied analytically. The results indicate that the onset of Brinkman ferroconvection is delayed with increasing MFD viscosity parameter but the critical wave number is found to be independent of this parameter. When compared to the simultaneous presence of buoyancy and magnetic forces, it is observed that the onset of Brinkman ferroconvection is delayed more when the magnetic forces alone are present. Asymptotic solutions for both small and large values of scaled inter-phase heat transfer coefficient H t are compared with those computed numerically and good agreement is found between them. Besides, the influence of magnetic and LTNE parameters on the stability characteristics of the system is also discussed. The available results in the literature are recovered as particular cases from the present study.  相似文献   

8.
The problem of fully developed forced convection in a parallel-plates channel filled with a saturated porous medium (involving a Brinkman model for the momentum equation), with the effect of viscous dissipation (involving a Brinkman number), is discussed. Some general matters relating to the possibility of fully developed convection are also discussed.  相似文献   

9.
A numerical study on the laminar vortex shedding and wake flow due to a porous‐wrapped solid circular cylinder has been made in this paper. The cylinder is horizontally placed, and is subjected to a uniform cross flow. The aim is to control the vortex shedding and drag force through a thin porous wrapper around a solid cylinder. The flow field is investigated for a wide range of Reynolds number in the laminar regime. The flow in the porous zone is governed by the Darcy–Brinkman–Forchheimer extended model and the Navier–Stokes equations in the fluid region. A control volume approach is adopted for computation of the governing equations along with a second‐order upwind scheme, which is used to discretize the convective terms inside the fluid region. The inclusion of a thin porous wrapper produces a significant reduction in drag and damps the oscillation compared with a solid cylinder. Dependence of Strouhal number and drag coefficient on porous layer thickness at different Reynolds number is analyzed. The dependence of Strouhal number and drag on the permeability of the medium is also examined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered.  相似文献   

11.
The onset of convection in a rarefield gas saturating a horizontal layer of a porous medium has been investigated using both Darcy and Brinkman models. It is assumed that due to rarefaction both velocity slip and temperature jump exist at the boundaries. The results show that (i) when the degree of rarefaction increases the critical Rayleigh number as well as the critical wave number for the onset of convection increases, (ii) stabilizing effect of temperature jump is more than that of velocity slip, (iii) Darcy model is seen to be the most stable one when compared to Brinkman model or the pure gaseous layer (i.e. in the absence of porous medium).  相似文献   

12.
Natural convective heat transfer and fluid flow in a vertical rectangular duct filled with a nanofluid is studied numerically assuming the thermal conductivity to be dependent on the fluid temperature. The transport equations for mass, momentum and energy formulated in dimensionless form are solved numerically using finite difference method. Particular efforts have been focused on the effects of the thermal conductivity variation parameter, Grashof number, Brinkman number, nanoparticles volume fraction, aspect ratio and type of nanoparticles on the fluid flow and heat transfer inside the cavity. It is found that the flow was enhanced for the increase in Grashof number, Brinkman number and aspect ratio for any values of conductivity variation parameter and for regular fluid and nanofluid. The heat transfer rate for regular fluid is less than that for the nanofluid for all governing parameters.  相似文献   

13.
Numerical investigation of steady natural convection flow through a fluid-saturated porous medium in a vertical rectangular duct is investigated. The Darcy-Forchheimer-Brinkman model is used to represent the fluid transport within the porous medium. One of the vertical walls of the duct is cooled to a constant temperature, while the other wall is heated to constant but different temperature. The other two sides of the duct are insulated. The finite difference method of second-order accuracy is used to solve the non-dimensional governing equations. The results are presented graphically to show the effects of the Darcy number, inertial parameter, Grashof number, Brinkman number, aspect ratio, and viscosity ratio. It is found that an increase in the Darcy number and inertial parameter reduces the flow intensity whereas an increase in the Grashof number, Brinkman number, aspect ratio, and viscosity ratio increases the flow intensity.  相似文献   

14.
The stability of a conducting fluid saturating a porous medium, in the presence of a uniform magnetic field, is investigated using the Brinkman model. In the first part of the paper constant-flux thermal boundary conditions are considered for which the onset of convection is known to correspond to a vanishingly small wave number. The external magnetic field is assumed to be aligned with gravity. Closed form solutions are obtained, based on a parallel flow assumption, for a porous layer with either rigid-rigid, rigid-free or free-free boundaries. In the second part of the paper, the linear stability of a porous layer, heated isothermally from below, is investigated using the normal mode technique. The external magnetic field is applied either vertically or horizontally. Solutions are obtained for the case of a porous layer with free boundaries. Results for a pure viscous fluid and a Darcy (densely packed) porous medium emerge from the present analysis as limiting cases.  相似文献   

15.
A theoretical solution is presented for the convective heat transfer of Giesekus viscoelastic fluid in pipes and channels, under fully developed thermal and hydrodynamic flow conditions, for an imposed constant heat flux at the wall. The fluid properties are taken as constant and axial conduction is negligible. The effect of Weissenberg number (We), mobility parameter (α) and Brinkman number (Br) on the temperature profile and Nusselt number are investigated. The results emphasize the significant effect of viscous dissipation and fluid elasticity on the Nusselt number in all circumstances. For wall cooling and the Brinkman number exceeds a critical value (Br 1), the heat generated by viscous dissipation overcomes the heat removed at the wall and fluid heats up longitudinally. Fluid elasticity shifts this critical Brinkman number to higher values.  相似文献   

16.
This paper reports an analytical investigation of non-isothermal fluid flow in a thin (or long) vertical pipe filled with porous medium via asymptotic analysis. We assume that the fluid inside the pipe is cooled (or heated) by the surrounding medium and that the flow is governed by the prescribed pressure drop between pipe’s ends. Starting from the dimensionless Darcy–Brinkman–Boussinesq system, we formally derive a macroscopic model describing the effective flow at small Brinkman–Darcy number. The asymptotic approximation is given by the explicit formulae for the velocity, pressure and temperature clearly acknowledging the effects of the cooling (heating) and porous structure. The theoretical error analysis is carried out to indicate the order of accuracy and to provide a rigorous justification of the effective model.  相似文献   

17.
The present paper deals with the hydrodynamics of a porous sphere placed in an arbitrary oscillatory Stokes flow. Unsteady Stokes equation is used for the flow outside the porous sphere and Brinkman equation is used for the flow inside the porous sphere. Corresponding Faxén’s law for drag and torque is derived and compared with few existing results in some special cases. Examples like uniform flow, oscillatory shear flow and oscillating Stokeslet are discussed. Also, translational oscillation of a weakly permeable sphere is discussed.  相似文献   

18.
The Blasius and Sakiadis flows with uniform suction or with zero transverse velocity, at the asymptotic state, in a Darcy–Brinkman porous medium are investigated in this note. Exact analytical solutions are derived for velocity as well as for the integral quantities. It is found that both the dimensional and non-dimensional displacement thickness, momentum thickness, energy thickness and the absolute wall shear stress are identical in both Blasius and Sakiadis flows at the asymptotic state.  相似文献   

19.
When viscous dissipation effects are important in duct flows the Brinkman number is widely used to quantify the relationship between the heat generated by dissipation and the heat exchanged at the wall. For Newtonian laminar fully developed pipe flow the use of the classical expression for this dimensionless group is appropriate, but under different conditions it can lead to misleading conclusions, such as when comparing flows through different cross-section ducts, flow regimes and mainly non-Newtonian flows. In this work a generalized Brinkman number is proposed, based on an energy balance for the power dissipated by friction, that allows proper quantification of viscous heating effects and reduces to the classical definition in laminar Newtonian pipe flow. The advantages of the new definition are shown and expressions are given for generalized Brinkman numbers in the most common cases.  相似文献   

20.
The composite effects of viscosity, porosity, buoyancy parameter, thermal conductivity ratio and non-Darcy effects of Brinkman friction and Forscheimmer quadratic drag on the mixed convection boundary layer flow past a semi-infinite plate in a fully-saturated porous regime are theoretically and numerically investigated using Keller’s implicit finite-difference technique and a double-shooting Runge-Kutta method. The Brinkman Forcheimer-extended Darcy model is implemented in the hydrodynamic boundary layer equation. The effects of the various non-dimensional thermofluid parameters, viz Grashof number, Darcy number, and Forchheimer number, and also porosity, thermal conductivity and viscosity parameters on the velocity and temperature fields are discussed. Computations for both numerical schemes are made where possible and found to be in excellent agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号