首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Contrary to the known difficulties of synthesizing dialkyl-acetals of chloral, it was found that the latter can be quantitatively inserted into the C? O? C bonds of cyclic, linear, substituted, or unsubstituted acetals at low temperatures in substantially anhydrous, acidic media, providing a variety of novel co-acetals, including a 1,3,5,8-tetraoxecane. The reaction was not applicable to ketals, where an aldol condensation was observed, nor to aldehydes other than chloral. A mechanism which avoids unstable chloral carbonium ion intermediates is discussed. In cases of substituted cyclic acetals or when two chloral units were added, often pure structural isomers were isolated, selectively formed by different Lewis acid catalysts.  相似文献   

2.
Conclusion The reaction of N-(-hydroxyethyl)-o-aminophenol with the diamides of the methyl-, ethyl-, and phenylphosphonous acids gave new bicyclic phosphoranes with a P-H bond.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimieheskaya, No. 6, pp. 1408–1409, June, 1982.  相似文献   

3.
4.
A pseudo-octahedral molybdenum dimethylamido complex that readily inserts 3-hexyne forming a new C-N bond has been characterized.  相似文献   

5.
6.
The reaction of the pyridyl-bridged binuclear complex [PdBr(μ-2-C5H4N)(PPh3)]2 with isocyynides CNR (R  p-C6H4OMe, Me, C6H11) yields the complex PdBr{(&2.dbnd;NR)C(&2.dbnd;NR) (2-C5H4N)}(PPh3)] containing a C,N-chelated 1,2-bis(imino)-2-(2-pyridyl)ethyl group, which results from successive insertions of two isocyanides molecules into the palladium2-pyridyl bond. The mononuclear compound trans-[PdBr(2-C5H4N)(PMePh2)2] readily reacts with various CNR ligands (R  p-C6H4OMe, Me, C6H11, CMe3) to give the imino(2-pyridyl)methylpalladium(II) derivatives, trans-[Pdbr{C(=NR)(2-C5H4N)} (PMePh2)2].  相似文献   

7.
Insertion of molecular oxygen into a palladium(II) hydride bond to form an (eta1-hydroperoxo)palladium(II) complex is reported. The hydroperoxo palladium(II) product has been crystallographically characterized. A second-order rate law (first-order in palladium and first-order in oxygen) is observed for the reaction and a large kinetic isotope effect implicates Pd-H bond cleavage in the rate-determining step. The results of studies with radical inhibitors and light suggest that the reaction does not proceed by a radical chain mechanism.  相似文献   

8.
9.
10.
The preparation and spectroscopic properties are described of some platinum(II) complexes having a hydride ligand cis or trans to an sp3 carbon, viz. trans-PtH(YCN)(PPh3)2 and cis-PtH(YCN)(LL) with YCN = C2H4CN, n-C3H6CN, o-CH2C6H4CN and LL = bis(diphenylphosphino)-ethene or -ethane. The complexes trans-PtH(YCN)(PPh3)2 can add a fifth ligand in solution; the resulting five-coordinate complex was observed by 31P NMR in the case of PtH(C3H6CN)(PPh3)3. Insertion of olefin (ethen, 1-cyanoethene, norbornadiene, allen) into the PtH bond of the trans-hydrido complexes occurs to give cis-dialkyl complexes, but the cis-hydrido complexes are unreactive. The mechanism of insertion is discussed in terms of the kinetics and the geometries of reactants and products.  相似文献   

11.
Reaction of (N(3)N)ZrPHPh (N(3)N=N(CH(2)CH(2)NSiMe(3))(3)(3-)) with PhCH(2)N[triple bond]C affords the 1,1-insertion product (N(3)N)Zr[C(PHPh)=NCH(2)Ph], which thermally rearranges to the phosphaalkene-containing complex, (N(3)N)Zr[N(CH(2)Ph)C(H)=PPh].  相似文献   

12.
Insertion of MeO(2)C-C[triple bond]C-CO(2)Me (DMAD) into the Pd-C bond of the heterodimetallic complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d(dmba-C)] (2) (dppm = Ph(2)PCH(2)PPh(2), dmba-C = metallated dimethylbenzylamine) and [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d(8-mq-C,N)] (3) (8-mq-C,N = cyclometallated 8-methylquinoline) yielded the sigma-alkenyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (7) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)[double bond, length as m-dash]C(CO(2)Me)(CH(2)C(9)H(6)N)}] (8), respectively. The latter afforded the adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(CH(2)C(9)H(6)N)}(CNBu(t))] (9) upon reaction with 1 equiv. of Bu(t)NC. The heterodinuclear sigma-butadienyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph=C(Ph)C(CO(2)Me)=(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (11) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph)=C(CO(2)Et)C(Ph)=C(CO(2)Et)(CH(2)C(9)H(6)N)}] (13) have been obtained by reaction of the metallate K[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)] (dppm = Ph(2)PCH(2)PPh(2)) with [P[upper bond 1 start]dCl{C(Ph)=C(Ph)C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)N[upper bond 1 end]Me(2))}] or [P[upper bond 1 start]dCl{C(Ph)=C(CO(2)Et)C(Ph)=(CO(2)Et)}(CH(2)C(9)H(6)N[upper bond 1 end])], respectively. Monoinsertion of various organic isocyanides RNC into the Pd-C bond of 2 and 3 afforded the corresponding heterometallic iminoacyl complexes. In the case of complexes [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end][upper bond 1 start]d{C=(NR)(CH(2)C(9)H(6)N[upper bond 1 end])}] (15a R = Ph, 15b R = xylyl), a static six-membered C,N chelate is formed at the Pd centre, in contrast to the situation in [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=NR)(o-C(6)H(4)CH(2)NMe(2))}] (14a R = o-anisyl, 14b R = 2,6-xylyl) where formation of a mu-eta(2)-Si-O bridge is preferred over NMe(2) coordination. The outcome of the reaction of the dimetallic alkyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe] with RNC depends both on the stoichiometry and the electronic donor properties of the isocyanide employed for the migratory insertion process. In the case of o-anisylisocyanide, the iminoacyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=N-o-anisyl)Me}] (16) results from the reaction in a 1 : 1 ratio. Addition of three equiv. of o-anisylisocyanide affords the tris(insertion) product [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}] (18). After addition of a fourth equivalent of o-anisylNC, exclusive formation of the isocyanide adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}(CN-o-anisyl)] (19) was spectroscopically evidenced. In the complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-C(6)H(4)COCH(2))](2)Me}] (20), the sigma-bound diazabutadienyl unit is part of a 12-membered organic macrocyle which results from bis(insertion) of 1,2-bis(2-isocyanophenoxy)ethane into the Pd-Me bond of the precursor complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe]. In contrast, addition of two equivalents of tert-butylisocyanide to a solution of the latter afforded [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]Fe(mu-dppm)P[upper bond 1 end]d{C(=NBu(t))Me}(CNBu(t))] (21) in which both a terminal and an inserted isocyanide ligand are coordinated to the Pd centre. In all cases, there was no evidence for competing CO substitution at the Fe(CO)(3) fragment by RNC. The molecular structures of the insertion products 8 x CH(2)Cl(2) and 16 x CH(2)Cl(2) have been determined by X-ray diffraction.  相似文献   

13.
The reaction of a palladiumII-hydride species with molecular oxygen to form palladiumII-hydroperoxide has been proposed as a key step in Pd-catalyzed aerobic oxidation reactions. We recently reported one of the first experimental precedents for such a step (Angew. Chem., Int. Ed. 2006, 45, 2904-2907). DFT calculations have been used to probe the mechanism for this reaction, which consists of formal insertion of O2 into the palladium-hydride bond of trans-(NHC)2Pd(H)OAc (NHC = N-heterocyclic carbene). Four different pathways were considered: (1) hydrogen atom abstraction (HAA) of the Pd-H bond by molecular oxygen, (2) reductive elimination of HX followed by oxygenation of Pd0 and protonolysis of the (eta2-peroxo)-PdII species, (3) oxygenation of palladiumII-hydride with subsequent reductive elimination of the O-H bond from an eta2-peroxo-PdIV center, and (4) formation of a cis-superoxide adduct of the palladium-hydride species followed by O-H bond formation via hydrogen atom migration. The calculations reveal that pathways 1 and 2 are preferred energetically, and both pathways exhibit very similar kinetic barriers. This result suggests that more than one pathway is possible for catalyst reoxidation in Pd-catalyzed aerobic oxidation reactions.  相似文献   

14.
15.
2-Butyne reacts stereospecifically with (PPh3)2Ni(Ph)(Br) in CH3OH at room temperature, leading to the isolable vinyl complex trans-(PPh3)2-Ni(Br)[cis-C(CH3)C(CH3)(Ph)] in 70% yield. Carbonylation (CO/CH3OH) of this material gives a 98% yield of cis-α,β-dimethylcinnamate. Reaction of the phenylnickel complex with 3-hexyne is more complicated; insertion again occurs, but the ultimate products of the reaction are phenyl-substituted styrenes and butadienes. Evidence is presented that free vinyl radicals are involved as intermediates in the 3-hexyne reaction.  相似文献   

16.
17.
The reaction of (PPh(3))AuCl with the low valent gallium compound Ga(DDP) (DDP = 2-((2,6-diisopropylphenyl)amino-4-((2,6-diiso-propylphenyl)imino)-2-pentene) yields the insertion products [{Ga(DDP)}Au{Ga(DDP)Cl}] (1) and [(PPh(3))Au{Ga(DDP)Cl}] (2), the first examples of molecular compounds with Au-Ga bonds.  相似文献   

18.
19.
20.
Carbohydrate-based phosphoranes were synthesized by reacting 2,2'-ethylidenebis(4,6-di-tert-butylphenyl)fluorophosphite with 1,2-O-isopropylidene-alpha-D-glucofuranose, beta-chloralose, and 1,2-isopropylidene-alpha-D-xylofuranose to form the monocyclic biophosphoranes 1-3, respectively, in the presence of N-chlorodiisopropylamine. Synthesis of the monocyclic biophosphorane 4 was achieved by reacting tris(2,6-di-isopropylphenyl)phosphite with 1,2-O-isopropylidene-alpha-D-glucofuranose in the presence of N-chlorodiisopropylamine. X-ray analysis of 1-4 revealed trigonal bipyramidal structures with the carbohydrate components occupying axial-equatorial sites. An eight-membered ring in 1-3 occupied diequatorial sites of the trigonal bipyramid. Solution and solid state 31P and solution 19F, 1H, and 13C NMR measurements including variable temperature and correlation spectroscopy studies established retention of the solid state structure in solution. A dynamic equilibrium exists among two isomeric forms. These biophosphoranes serve as models for active sites of phosphoryl transfer enzymes. The rapid exchange process reorients the carbohydrate component of the trigonal bipyramidal phosphorane. At an active site, this type of pseudorotational behavior provides a mechanism that could bring another active site residue into play and account for a means by which some phosphoryl transfer enzymes express promiscuous behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号