首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel molecular clips with anthracene sidewalls (1 a-c) were synthesized; they form stable host-guest complexes with a variety of electron-deficient aromatic and quinoid molecules. According to single-crystal structure analyses of clip 1 c and 1,2,4,5-tetracyanobenzene (TCNB) complex 14@1 b, the clips' anthracene sidewalls have to be compressed substantially during the complex formation to provide attractive pi-pi interactions between the aromatic guest molecule and the two anthracene sidewalls in the complex. The compression and expansion of aromatic sidewalls are calculated by molecular mechanics to be low-energy processes, so the energy required for compression of the anthracene sidewalls during complex formation is apparently overcompensated by the gain in energy resulting from the attractive pi-pi interactions. The finding that complexes of the clips 1 a-c are more stable than those of the corresponding clips 2 a-c can be explained in terms of the larger van der Waals contact surfaces of the anthracene sidewalls in 1 a-c (relative to the naphthalene sidewalls in 2 a-c). Color changes resulting from charge-transfer (CT) bands are observed in complex formation by 1 a-c: from colorless to red or purple with TCNB (14), and from yellow to green with 2,4,7-trinitro-9-fluorenone TNF (17). Independently, the host 1 b and guest 14 fluoresce from their respective excited singlet states, whilst in the complex 14@1 b the charge-transfer state quenches the higher-energy singlet states of the two components, and as a result luminescence is only observed from this new CT state. To the best of our knowledge, complex 14@1 b is the first example of CT luminescence from a host-guest complex. The binding constant determined for the formation of the TCNB complex 14@1 b from a UV/Vis titration experiment (Ka = 12 400 m(-1)) agrees well with the value (K(a) = 12 800 m(-1)) obtained by 1H NMR titration.  相似文献   

2.
The novel trimethylene-bridged clips 3 and 4 have been synthesized by using repetitive stereoselective Diels-Alder reactions of the benzo- and naphthobismethylenenorbornenes 8 and 19 as dienes and norbornadiene 9 as bisdienophile, and subsequent dehydrogenation of the primary cyclobisadducts 10 and 20 by using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Clips 3 and 4 serve as receptors for a variety of electron-deficient neutral and cationic aromatic substrates, comparable to the molecular tweezers 1 and 2. The thermodynamic parameters of the complex formation, K(a) and DeltaG, were determined by (1)H NMR titration experiments and, in the case of the highly stable complex TCNB 32@4, by the use of isothermal titration microcalorimetry. The finding that clip 4 forms more stable complexes than 3 can be explained by the larger van der Waals contact surfaces of the naphthalene sidewalls in 4 compared to the corresponding benzene systems in 3. In the complexes with 4 as receptor, the plane of each aromatic substrate molecule is calculated to be oriented almost parallel to the naphthalene sidewalls. However, in the complexes of tweezers 2, the substrate is usually oriented parallel to the central naphthalene spacer unit. Due to the more open topology of 4, most complexes were calculated to consist of two or more equilibrating noncovalent conformers.  相似文献   

3.
Molecular clips and tweezers are able to selectively bind electron-deficient aromatic and aliphatic substrates. By means of pressure-area isotherms and Brewster angle microscopy (BAM), the self-association process and phase behavior of dimethylene-bridged molecular clips and tetramethylene-bridged molecular tweezers each substituted with two acetoxy groups as polar head groups were investigated. In a series of experiments, we observed that the molecular surface area of the clips and tweezers only depended on the skeletal structure and not on the polar groups. The measured areas agreed with the effective molecular diameters of the molecules if the aromatic side walls of the clips or tweezers were assumed to be aligned perpendicularly to the water surface. We compared the phase behavior of the pure molecular clips and tweezers with that of the host-guest complexes of these molecules, which were formed with 1,2,4,5-tetracyanobenzene (TCNB) as the guest molecule. For the clips with a central benzene (I) and naphthalene spacer unit (II), the complex formation with TCNB had no measurable influence on the phase diagrams of the films. We observed, however, a dramatic difference in the BAM images and pi-A isotherms between the pure molecular tweezers III and its complex with TCNB (TCNB@III). In addition to the pi-A isotherms, we used the surface potential (V)-area (A) isotherms to compare the pure tweezers III with the corresponding complex (TCNB@III). There was a strong difference in the maximum surface potential value for the pure tweezers (450 mV) and that for the complex (300 mV). In additional experiments, we prepared LB layers of such molecules, which were investigated by fluorescence spectroscopy. In comparison to the pure tweezers III, a luminescence emission of charge-transfer (CT) origin was observed for the host-guest complex (TCNB@III) fixed on the solid substrate. It turned out that the spectra were in good agreement with the results observed in chloroform solution.  相似文献   

4.
Artificial molecular clips and tweezers, designed for cofactor and amino acid recognition, are able to inhibit the enzymatic activity of alcohol dehydrogenase (ADH). IC50 values and kinetic investigations point to two different new mechanisms of interference with the NAD(+)-dependent oxidoreductase: While the clip seems to pull the cofactor out of its cleft, the tweezer docks onto lysine residues around the active site. Both modes of action can be reverted to some extent, by appropriate additives. However, while cofactor depletion by clip 1 was in part restored by subsequent NAD(+) addition, the tweezer (2) inhibition requires the competitive action of lysine derivatives. Lineweaver-Burk plots indicate a competitive mechanism for the clip, with respect to both substrate and cofactor, while the tweezer clearly follows a noncompetitive mechanism. Conformational analysis by CD spectroscopy demonstrates significant ADH denaturation in both cases. However, only the latter case (tweezer-lysine) is reversible, in full agreement with the above-detailed enzyme switch experiments. The complexes of ADH with clips or tweezer can be visualized in a nondenaturing gel electrophoresis, where the complexes migrate toward the anode, in contrast to the pure enzyme which approaches the cathode. Supramolecular chemistry has thus been employed as a means to control protein function with the specificity of artificial hosts opening new avenues for this endeavor.  相似文献   

5.
Developing methodologies for on‐demand control of the release of a molecular guest requires the rational design of stimuli‐responsive hosts with functional cavities. While a substantial number of responsive metallacages have already been described, the case of coordination‐tweezers has been less explored. Herein, we report the first example of a redox‐triggered guest release from a metalla‐assembled tweezer. This tweezer incorporates two redox‐active panels constructed from the electron‐rich 9‐(1,3‐dithiol‐2‐ylidene)fluorene unit that are facing each other. It dimerizes spontaneously in solution and the resulting interpenetrated supramolecular structure can dissociate in the presence of an electron‐poor planar unit, forming a 1:1 host–guest complex. This complex dissociates upon tweezer oxidation/dimerization, offering an original redox‐triggered molecular delivery pathway.  相似文献   

6.
胆甾类分子钳对氨基酸衍生物的对映选择性识别   总被引:8,自引:0,他引:8  
用差紫外光谱滴定法考察了以脱氧胆酸作spacer的手性分子钳1~3对一系列α-氨基酸甲酯的对映选择性识别性能。结果表明,分子钳1和2与客体氨基酸甲酯形成1:1型超分子配合物,并显示较好的手性识别能力。分钳3对所考察的氨基酸甲酯均没有明显的识别作用。讨论了主-客体间尺寸/形状匹配、几何互补等因素对形成超分子配合物的影响,并利用计算机模拟作辅助手段对实验结果和现象进行了解释。  相似文献   

7.
We have synthesized molecular clips 1 comprising (i) two benzo[k]fluoranthene sidewalls and (ii) a dimethylene-connected benzene bridge that carries two acetoxy (1a), hydroxy (1b), or methoxy (1c) substituents in the para position. Their NMR spectra, single-crystal structures, and photophysical (fluorescence intensity, lifetime, depolarization) and electrochemical properties are discussed. For the purpose of comparison, similar compounds (2 and 3) containing only one benzo[k]fluoranthene unit have been prepared and studied. The strongly fluorescent clips 1 form stable complexes with electron-acceptor guests because of a highly negative electrostatic potential on the inner van der Waals surface of their cavity. The complexation constants in chloroform solution for a variety of guests, determined by NMR and fluorescence titration, are much larger than those of the corresponding anthracene and naphthalene clips (4 and 5), particularly in the case of extended aromatic guests. The effect of the substituents in the para position of the benzene spacer unit of clips 1 is discussed on the basis of the host-guest complex structures obtained by X-ray analysis and molecular mechanics simulations. In the case of 9-dicyanomethylene-2,4,7-trinitrofluorene (TNF) guest, complex formation with clip 1a causes dramatic changes in the photophysical and electrochemical properties: (i) a new charge-transfer band at 600 nm arises, (ii) a very efficient quenching of the strong benzo[k]fluoranthene fluorescence takes place, (iii) shifts of both the first oxidation (clip-centered) and reduction (TNF-centered) potentials are observed, and (iv) reversible disassembling of the complex can be obtained by electrochemical stimulation.  相似文献   

8.
Molecular clips possessing U-shaped cavities have been functionalized on their convex side with long aliphatic tails. These molecules form dimers which self-assemble into malleable lamellar thin films. Upon addition of a guest (methyl 3,5-dihydroxybenzoate), a 1:1 host-guest complex is formed, which prohibits clip dimerization. As a result, the lamellar structure of the material is lost. Complexation of 3,5-dihydroxybenzoic acid in the clip results in host-guest complexes which dimerize by hydrogen bonding interactions between the carboxylic acid functions of the bound guests. This dimerization restores the lamellar type architecture of the material.  相似文献   

9.
Novel dynamic molecular tweezers (DMTs) 3 a , 3 b , 4 a , 4 b , and 5 b , composed of two tub‐shaped dibenzocyclooctatetraene (DBCOT) units, were designed and synthesized. The cyclooctatetraene (COT) rings of these DMTs readily invert in solution, and the molecular structure shows rigid syn and anti forms in an equilibrium mixture in solution. The syn and anti conformers can be observed by NMR. The isomerization barriers of 3 a , 3 b , 4 a , 4 b , and 5 b are in the range of 16.5–21.3 kcal mol?1, depending on steric repulsion between substituents of the COT rings and protons of the central benzene ring. These DMTs form complexes with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) and 1,2,4,5‐tetracyano‐benzene (TCNB) in solution and in the solid state. The binding abilities of these DMTs increase with electron‐donating substituents on COT, which increase the electron densities of the cavity of the syn form, as supported by theoretical calculations. In addition, elongation of the terminal alkoxy chains of the DMTs was found to cause the enhancement of van der Waals contact with guest molecules. Therefore, 5 b , which has CH2OMe groups on the COT rings and longer ethoxy groups on the terminal benzene rings, showed the highest electron density of the cavity and hence the highest binding ability with the electron‐deficient guest molecules. Interestingly, solutions of 3 b , 4 b , and 5 b show thermochromism in the presence of DDQ. A solution of 3 b or 4 b with DDQ in CHCl3 is green due to charge‐transfer interaction at room temperature and the color changes from green to yellow upon heating to 60 °C and from green to blue upon cooling to ?40 °C, whereas the high complexation ability of 5 b with DDQ only shows a change in the shade of blue.  相似文献   

10.
Density functional computations using the BP86 functional within the resolution-of-identity approximation and polarized triple-zeta basis sets are employed for the study of the three isoelectronic (CO)(4)FeL (L = CCH(2) (5), BNH(2) (6), NBH(2) (7)) as well as (CO)(4)Fe(NBcat) (9) (cat = catecholato) complexes. In all complexes 5-7, the ligand L prefers the equatorial position of a pseudo trigonal bipyramid. The borylnitrene complex 7 has a linear Fe-N-B arrangement; its Fe-L bond dissociation energy is similar to that of the vinylidene complex 5 and only slightly lower than that of 6. Nonetheless, 7 is less stable thermodynamically than 6 by 40 kcal mol(-1). Complexes of type 7 are expected to be reactive on the basis of the following findings: the HOMO-LUMO energy gap is small, the rearrangement from 7 to 6 via an iminoborane intermediate involves barriers of 15 and 28 kcal mol(-1), and the dissociation of a CO molecule to give (CO)(3)FeNBH(2) is only slightly endergonic (+7 kcal mol(-1) at 298.15 K). The catecholate bridge in 9 results in significant changes: the bipyramidal complex is no longer a minimum, but an isocycanato complex is obtained instead computationally.  相似文献   

11.
Semiempirical AM1 calculations have been carried out on host-guest complexes of model hemicarcerands 1a and 2a. The justification for the choice of the AM1 Hamiltonian was based on a comparison between reported X-ray data for the smaller tetrabromocavitand 4a and computational results obtained using several different Hamiltonians. The complexation behavior of hemicarcerands 1a and 2a have been compared with experimental results reported by Cram et al. for the related hemicarcerands 1b and 2b. Based on this comparison, a criterion for predicting guest encapsulation was developed, E(complexation), which relies on the calculation of AM1 heats of formation for host, guest, and hemicarceplex. If E(complexation) is lower than 10 kcal/mol, then a guest will be encapsulated, while if it is greater than 30 kcal/mol, a guest will not be encapsulated. The use of constrained-path AM1 optimizations to determine the energy barriers to guest entry and exit from the host was found to be a useful tool for examining suitable host-guest combinations when the E(complexation) criteria does not hold. We have computed the barriers to exit of N, N-dimethylformamide (dmf) and furan from the hemicarcerand 1a, the former has been compared with the experiment and shows excellent agreement. Based on the success of the above computational methods in predicting which host-guest combinations will form stable hemicarceplexes we have synthesized a new target hemicarceplex 1b.furan.  相似文献   

12.
Aqueous solutions of rhodium(III) tetra p-sulfonatophenyl porphyrin ((TSPP)Rh(III)) complexes react with dihydrogen to produce equilibrium distributions between six rhodium species including rhodium hydride, rhodium(I), and rhodium(II) dimer complexes. Equilibrium thermodynamic studies (298 K) for this system establish the quantitative relationships that define the distribution of species in aqueous solution as a function of the dihydrogen and hydrogen ion concentrations through direct measurement of five equilibrium constants along with dissociation energies of D(2)O and dihydrogen in water. The hydride complex ([(TSPP)Rh-D(D(2)O)](-4)) is a weak acid (K(a)(298 K) = (8.0 +/- 0.5) x 10(-8)). Equilibrium constants and free energy changes for a series of reactions that could not be directly determined including homolysis reactions of the Rh(II)-Rh(II) dimer with water (D(2)O) and dihydrogen (D(2)) are derived from the directly measured equilibria. The rhodium hydride (Rh-D)(aq) and rhodium hydroxide (Rh-OD)(aq) bond dissociation free energies for [(TSPP)Rh-D(D(2)O)](-4) and [(TSPP)Rh-OD(D(2)O)](-4) in water are nearly equal (Rh-D = 60 +/- 3 kcal mol(-1), Rh-OD = 62 +/- 3 kcal mol(-1)). Free energy changes in aqueous media are reported for reactions that substitute hydroxide (OD(-)) (-11.9 +/- 0.1 kcal mol(-1)), hydride (D(-)) (-54.9 kcal mol(-1)), and (TSPP)Rh(I): (-7.3 +/- 0.1 kcal mol(-1)) for a water in [(TSPP)Rh(III)(D(2)O)(2)](-3) and for the rhodium hydride [(TSPP)Rh-D(D(2)O)](-4) to dissociate to produce a proton (9.7 +/- 0.1 kcal mol(-1)), a hydrogen atom (approximately 60 +/- 3 kcal mol(-1)), and a hydride (D(-)) (54.9 kcal mol(-1)) in water.  相似文献   

13.
A molecular tweezer based on a glycoluril-derived framework bearing four phosphate groups was synthesized and shown to be capable of binding organic amines in aqueous solution. This work reports the Ka values for 30 complexes of this molecular tweezer and amine guests, determined by means of 1H NMR titrations. Both the hydrophobic cavity and the phosphate groups contribute to the binding. Bulkier molecules and molecules bearing negatively charged groups like carboxylates in amino acids bind less tightly due to a steric clash and coulombic repulsion. The narrow cavity and the strong ionic interactions of the phosphate groups with ammonium guests favor binding of aliphatic diamines. These binding properties clearly distinguish this system from structurally related molecular clips and tweezers.  相似文献   

14.
《中国化学快报》2022,33(11):4900-4903
A novel type of host–guest recognition systems have been developed on the basis of a Au(III) molecular tweezer receptor and chiral Pt(II) guests. The complementary host–guest motifs display high non-covalent binding affinity (Ka: ~104 L/mol) due to the participation of two-fold intermolecular π–π stacking interactions. Both phosphorescence and chirality signals of the Pt(II) guests strengthen in the resulting host–guest complexes, because of the cooperative rigidifying and shielding effects rendered by the tweezer receptor. Their intensities can be reversibly switched toward pH changes, by taking advantage of the electronic repulsion effect between the protonated form of tweezer receptor and the positive-charged guests in acidic environments. Overall, the current study demonstrates the feasibility to enhance and modulate phosphorescence and chirality signals simultaneously via molecular tweezer-based host–guest recognition.  相似文献   

15.
A series of new receptor molecules derived from 2,4,6,8-tetraazabicyclo[3.3.1]nonane-3,7-dione (propanediurea) is described. These molecules possess a cavity which is defined by two nearly parallel aromatic side walls positioned on top of a bis-urea framework. The resulting "U-shaped" clip molecules are ideal hosts for the complexation of flat aromatic guest molecules. The affinity of these new propanediurea based molecular clips for dihydroxybenzene derivatives is exceptionally high, with association constants up to K(a) = 2 400 000 L mol(-)(1). Comparison of the binding mechanism of a variety of clip and half clip hosts, in conjunction with NMR, IR, and X-ray studies, has enabled the reason for this high binding to be elucidated. It is shown that subtle sub-angstrom changes in the geometry of the clip molecules have a great impact on their binding properties.  相似文献   

16.
Host–guest complexation between crown ether-based cryptand hosts and a carbonium ion, tropylium hexafluorophosphate was studied. 1H NMR, NOESY NMR, and electrospray ionization mass spectrometry were employed to characterize these inclusion complexes. The contrast tests of 1H NMR and association constants indicated that cryptands are much better hosts for tropylium hexafluorophosphate than the corresponding simple crown ethers. C–H?O hydrogen bonding, face-to-face π-stacking interactions, and charge-transfer interactions are thought to be the main driving forces for the formation of these host–guest complexes. These multiple non-covalent interactions may jointly contribute to the complex formation and considerably reinforce the complex stability. Moreover, the complexation between dibenzo-24-crown-8-based cryptand 4 and tropylium hexafluorophosphate 7 can be reversibly controlled by adding KPF6 and then DB18C6 in 1:1 acetonitrile/chloroform, providing a new cation-responsive host–guest recognition motif for supramolecular chemistry.  相似文献   

17.
The complexation behavior, binding properties, and spectral parameters of supramolecular chirality induction in the achiral host molecule, syn (face-to-face conformation) ethane-bridged bis(zinc porphyrin), upon interaction with chiral bidentate guests (diamines and amino alcohols) have been studied by means of UV-vis, CD, fluorescence, (1)H NMR, and ESI MS techniques. It was found that the guest structure plays a decisive role in the chirogenesis pathway. The majority of bidentate ligands (except those geometrically unsuitable) exhibit two major equilibria steps: the first guest ligation leading to formation of the 1:1 host-guest tweezer structure (K(1)) and the second guest molecule ligation (K(2)) forming the anti bis-ligated species (1:2). The second ligation is much weaker (K(1) > K(2)) due to the optimal geometry and stability of the 1:1 tweezer complex. The enhanced conformational stability of the tweezer complex ensures an efficient chirality transfer from the chiral guest to the achiral host, consequently inducing a remarkably high optical activity in the bis-porphyrin.  相似文献   

18.
Here we present a comprehensive study of the thermodynamic parameters (enthalpy, entropy, and volume changes) associated with carbon monoxide photodissociation and rebinding to Fe(II) microperoxidase-11 (Fe(II)MP11) and Fe(ll) tetrakis(4-sulfonatophenyl)porphine complex (FeII4SP) with water and 2-methylimidazole as proximal ligands. CO photodissociation from FeII4SP complexes is accompanied by a positive volume change of approximately 17 mL mol(-1). A smaller volume change of approximately 12 mL mol(-1) was observed for CO dissociation from Fe(II)MP-11. We attribute the positive volume change to cleavage of the Fe-CO covalent bond and to solvent reorganization due to the low-spin to high-spin transition. CO binding is an exothermic reaction with an enthalpy change of -17 kcal mol(-1) for the CO-FeII4SP complexes and -13 kcal mol(-1) for the CO-Fe(II)MP11 complex. In all cases, the ligand recombination occurs as a single-exponential process indicating that CO dissociation is followed by direct CO rebinding to a high-spin five-coordinate complex without concomitant dissociation of the proximal base. In addition, observed negative activation entropies and volumes for ligand binding to (2-Melm)FeII4SP and MP-11, respectively, suggest that CO rebinding can be described by an associative mechanism with bond formation being the rate-limiting step.  相似文献   

19.
Proton exchange from the bound to the bulk waters on the oxo-centered rhodium(III) trimer, [Rh(3)(micro(3)-O)(micro-O(2)CCH(3))(6)(OH(2))(3)](+)(abbreviated as Rh(3)(+)), was investigated over the temperature range of 219.1-313.9 K using a (1)H NMR line-broadening technique. By solving the modified Bloch equations for a two-site chemical exchange, lifetimes (tau) for proton transfer at pH = 2.7, 3.6, and 7.0 ([Rh(3)(+)]= 26 mM, T= 298 K) were determined to be 0.3 (+/-.08) ms, 2 (+/-0.3) ms, and 0.2 (+/-0.2) ms, respectively. From the temperature dependence of the rate, the activation parameters were determined to be DeltaH(++)= 16.2 (+/-0.5) kJ mol(-1) and DeltaS(++)=- 123 (+/-2) J mol(-1) K(-1), DeltaH(++)= 14.9 (+/-0.5) kJ mol(-1) and DeltaS(++)=- 141 (+/-2) J mol(-1) K(-1), and DeltaH(++)= 45 (+/-2) kJ mol(-1) and DeltaS(++)=- 22 (+/-5) J mol(-1) K(-1) for pH = 2.7, 3.6 and 7.0, respectively. All results are reported for a mixed solvent system [acetone : 250 mM NaClO(4)(aq)(3:1)], which was necessary to depress the freezing point of the solution so that the (1)H NMR signal due to bound water could be observed. The pK(a) of Rh(3)(+) was measured to be 8.9 (+/-0.2) in the mixed solvent, which is near the pK(a) for an aqueous solution (8.3 (+/-0.2)). Surprisingly, the lifetimes for protons on Rh(3)(+) are close to those observed for the Rh(OH(2))(6)(3+) ion, in spite of the considerable difference in structure, Br?nsted acidity of the bound waters and average charge on the metal ion.  相似文献   

20.
Molecular clips are able to selectively bind electron deficient aromatic and aliphatic substrates, and these processes are usually investigated in dilute solutions of organic solvents. Caused by discrepancies between polar and hydrophobic groups, molecular clips are surface-active compounds and, in analogy to surfactants, they can form monomolecular films at the water surface. In this publication, we systematically investigated the self-association process and the phase-behaviour of three different molecular clips with the polar head groups -OCH2COOH (a), -OCH2COOEt (b), and -OCONHPh (c) by means of surface-pressure-area-isotherms and Brewster-angle-microscopy (BAM). We observed marked differences for all investigated surface-active compounds. The molecular surface areas of the three clips, determined from pressure-area-isotherms, could be traced back to the molecular diameters of the amphiphilic compounds. In several experiments we investigated the influence of diverse film compression and expansion steps. Hysteresis effects could be explained by different film morphologies. In a series of experiments we could show that the aromatic guest molecule 1,2,4,5-tetracyanobenzene (TCNB), which strongly binds to molecular clips, did not influence the phase diagrams and film structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号