首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title radical (1) is generated in the gas-phase by collisional neutralization of carbonyl-protonated oxolan-3-one. A 1.5% fraction of 1 does not dissociate and is detected following reionization as survivor ions. The major dissociation of 1 (approximately 56%) occurs as loss of the hydroxyl H atom forming oxolan-3-one (2). The competing ring cleavages by O[bond]C-2 and C-4[bond]C-5 bond dissociations combined account for approximately 42% of dissociation and result in the formation of formaldehyde and 2-hydroxyallyl radical. Additional ring-cleavage dissociations of 1 resulting in the formation of C(2)H(3)O and C(2)H(4)O cannot be explained as occurring competitively on the doublet ground (X) electronic state of 1, but are energetically accessible from the A and higher electronic states accessed by vertical electron transfer. Exothermic protonation of 2 also produces 3-oxo-(1H)-oxolanium cation (3(+)) which upon collisional neutralization gives hypervalent 3-oxo-(1H)-oxolanium radical (3). The latter dissociates spontaneously by ring opening and expulsion of hydroxy radical. Experiment and calculations suggest that carbohydrate radicals incorporating the 3-hydroxyoxolan-3-yl motif will prefer ring-cleavage dissociations at low internal energies or upon photoexcitation by absorbing light at approximately 590 and approximately 400 nm.  相似文献   

2.
Neutralization-reionization mass spectrometry was used to generate hypervalent radicals pyrrolidinium (1H ·), N-methylpyrrolidinium (2H ·), N-ethylpyrrolidinium (3H ·), N-phenylpyrrolidinium (4H ·), N,N-dimethylpyrrolidinium (5·), N-methyl-N-ethylpyrrolidinium (6 ·), and their deuterium-labeled derivatives and to study their dissociations in the gas phase. Isotopomers of pyrrolidinium and N-phenylpyrrolidinium showed small fractions of stable radicals of microsecond lifetimes that were detected following collisional reionization. The leaving group abilities in radical dissociations were established as H· » C2H5 · ≈ C6H5 ·> CH3 ·. The hydrogen atom was the best leaving group in secondary and tertiary pyrrolidinium radicals 1H ·–4H·, whereas losses of ethyl, phenyl, and ring openings by N-C bond cleavages were less facile. Methyl was the worst leaving group among those studied. Ring cleavages dominated the dissociations of quaternary pyrrolidinium radicals 5· and 6·, whereas losses of alkyl substituents were less efficient. The electronic properties of hypervalent ammonium radicals are discussed to rationalize the experimental leaving group abilities of hydrogen atom, alkyl, and phenyl radicals.  相似文献   

3.
Protonated acetamide exists as two planar conformers, the more stable anti-form (anti-1(+)) and the syn-form (syn-1(+)), DeltaG(degree) (298) (anti-->syn) = 10.8 kJ mol(-1). Collisional neutralization of 1(+) produces 1-hydroxy-1-amino-1-ethyl radicals (anti-1 and syn-1) which in part survive for 3.7 micros. The major dissociation of 1 is loss of the hydroxyl hydrogen atom (approximately 95%) which is accompanied by loss of one of the methyl hydrogen atoms (approximately 3%) and loss of the methyl group (approximately 2%). The most favorable dissociation of the OH bond is calculated to be only 34 kJ mol(1) endothermic but requires 88 kJ mol(-1) in the transition state. Other dissociations of 1, e.g., loss of one of the amide hydrogens, methyl hydrogens, and loss of ammonia are calculated to proceed through higher- energy transition states and are not kinetically competitive if proceeding from the ground doublet electronic state of 1. The unimolecular dissociation of 1 following collisional electron transfer is promoted by large Franck-Condon effects that result in 8090 kJ mol(-1) vibrational excitation in the radicals. Radicals 1 are calculated to exoergically abstract hydrogen atoms from acetamide in water, but not in the gas phase. The different reactivity is due to solvent effects that favor the products, (.)CH(2)CONH(2) and CH(3)CH(OH)NH(2), over the reactants.  相似文献   

4.
Neutral hydroxymethylene HCOH is an important intermediate in several chemical reactions; however, it is difficult to observe due to its high reactivity. In this work, neutral hydroxymethylene and formaldehyde were generated by charge exchange neutralization of their respective ionic counterparts and then were reionized and detected as positive‐ion recovery signals in neutralization–reionization mass spectrometry in a magnetic sector instrument of BEE geometry. The reionized species were characterized by their subsequent collision‐induced dissociation mass spectra. The transient hydroxymethylene neutral was observed to isomerize to formaldehyde with an experimental time span exceeding 13.9 µs. The vertical neutralization energy of the HCOH+? ion has also been assayed using charge transfer reactions between the fast ions and stationary target gases of differing ionization energy. The measured values match the result of ab initio calculations at the QCISD/6‐311 + G(d,p) and CCSD(T)/6‐311 + + G(3df,2p) levels of theory. Neutral hydroxymethylene was also produced by proton transfer from CH2OH+ to a strong base such as pyridine, confirmed by appropriate isotopic labeling. There is a kinetic isotope effect (KIE) for H+ versus D+ transfer from the C atom of the hydroxymethyl cation of ~3, consistent with a primary KIE of a nearly thermoneutral reaction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Preliminary results from a liquid nitrogen-cooled ion mobility (IM) orthogonal-time-of-flight (o-ToF) mass spectrometer applied to the separation of electronic isomers of Kr2+ and methanol radical cations (conventional and distonic) are presented. Ab initio calculations were used to estimate the energies and energy barriers to interconversion between conventional (CH3OH*+) and distonic (CH2*OH2+) radical cations. In addition, computations and experiments are used to compare ion-neutral collision cross-sections for CH3OH*+ and CH2*OH2+ radical cations and suggest that the mobility separation is achieved by ion-neutral interactions between ions and neutral buffer gas.  相似文献   

6.
The unimolecular reactions of radical cations and cations derived from phenylarsane, C6H5AsH2 (1) and dideutero phenylarsane, C6H5AsD2 (1-d2), were investigated by methods of tandem mass spectrometry and theoretical calculations. The mass spectrometric experiments reveal that the molecular ion of phenylarsane, 1*+, exhibits different reactivity at low and high internal excess energy. Only at low internal energy the observed fragmentations are as expected, that is the molecular ion 1*+ decomposes almost exclusively by loss of an H atom. The deuterated derivative 1-d2 with an AsD2 group eliminates selectively a D atom under these conditions. The resulting phenylarsenium ion [C6H5AsH]+, 2+, decomposes rather easily by loss of the As atom to give the benzene radical cation [C6H6]*+ and is therefore of low abundance in the 70 eV EI mass spectrum. At high internal excess energy, the ion 1*+ decomposes very differently either by elimination of an H2 molecule, or by release of the As atom, or by loss of an AsH fragment. Final products of these reactions are either the benzoarsenium ion 4*+, or the benzonium ion [C6H7]+, or the benzene radical cation, [C6H6]*+. As key-steps, these fragmentations contain reductive eliminations from the central As atom under H-H or C-H bond formation. Labeling experiments show that H/D exchange reactions precede these fragmentations and, specifically, that complete positional exchange of the H atoms in 1*+ occurs. Computations at the UMP2/6-311+G(d)//UHF/6-311+G(d) level agree best with the experimental results and suggest: (i) 1*+ rearranges (activation enthalpy of 93 kJ mol(-1)) to a distinctly more stable (DeltaH(r)(298) = -64 kJ mol(-1)) isomer 1 sigma*+ with a structure best represented as a distonic radical cation sigma complex between AsH and benzene. (ii) The six H atoms of the benzene moiety of 1 sigma*+ become equivalent by a fast ring walk of the AsH group. (iii) A reversible isomerization 1+<==>1 sigma*+ scrambles eventually all H atoms over all positions in 1*+. The distonic radical cation 1*+ is predisposed for the elimination of an As atom or an AsH fragment. The calculations are in accordance with the experimentally preferred reactions when the As atom and the AsH fragment are generated in the quartet and triplet state, respectively. Alternatively, 1*(+) undergoes a reductive elimination of H2 from the AsH2 group via a remarkably stable complex of the phenylarsandiyl radical cation, [C6H5As]*+ and an H2 molecule.  相似文献   

7.
8.
Vertical excitation energies and oscillator strengths for several valence and Rydberg electronic states of vinyl, propen-1-yl, propen-2-yl, 1-buten-2-yl, and trans-2-buten-2-yl radicals are calculated using the equation-of-motion coupled cluster methods with single and double substitutions (EOM-CCSD). The ground and the lowest excited state (n <-- pi) equilibrium geometries are calculated using the CCSD(T) and EOM-SF-CCSD methods, respectively, and adiabatic excitation energies for the n <-- pi state are reported. Systematic changes in the geometries, excitation energies, and Rydberg state quantum defects within this group of radicals are discussed.  相似文献   

9.
The kinetics of competing multiple-barrier unimolecular dissociations of o-, m-, and p-chlorotoluene radical cations to C7H7(+) (benzyl and tropylium) are studied by ab initio/Rice-Ramsperger-Kassel-Marcus (RRKM) calculations. This system presents a very intriguing kinetic example in which the conventional approach assuming a single-barrier or a double-well potential surface with one transition state cannot predict or explain the outcome. The molecular parameters obtained at the SCF level of theory with the DZP basis set are utilized for the evaluation of microcanonical RRKM rate constants with no adjustable parameters. First-principles calculations provide the microscopic details of the reaction kinetics along the two competing multiple-barrier reaction pathways: the rate-energy curves for all elementary steps; temporal variations of the reactants, the reaction intermediates, and the products; and the product yield as a function of energy. The rate constant for each channel is calculated as a function of the internal energy at 0 K. After the thermal correction, the calculated rate-energy curves for the benzyl channel agree well with the photoelectron photoion coincidence data obtained at room temperature for all three isomers. Close agreement between experiments and theory suggests that first-principles calculations taking the full sequence of kinetic steps into account offer a useful kinetic model capable of correctly predicting the outcome of competing multiple-barrier reactions. The slowest process is identified as [1,2] and [1,3] alpha-H migration at the entrance to the tropylium and benzyl channel, respectively. However, the overall rate is determined not by the slowest process, but by the combination of the slowest rate and the net flux toward the product, which is multiplicatively reduced with an increasing number of reaction intermediates. The product yield calculation confirms the benzyl cation as the predominant product. For all isomers, the thermodynamically most stable tropylium ion is produced much less than expected because a large fraction of flux coming into the tropylium channel goes back to the benzyl channel. The benzyl channel is kinetically favored because it involves a lower entrance barrier with fewer rearrangements than the tropylium channel.  相似文献   

10.
11.
The coupling of a simple microreactor to an atmospheric pressure ion source, such as electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI), allows the investigation of reactions in solution by mass spectrometry. The tris(p-bromophenyl)aminium hexachloroantimonate (1(*)(+)SbCl(6)(-))-initiated reactions of phenylvinylsulfide (2) and cyclopentadiene (3) and of trans-anethole (5) and isoprene (6) and the dimerization of 1,3-cyclohexadiene (8) to give the respective Diels-Alder products were studied. These preparatively interesting reactions proceed as radical cation chain reactions via the transient radical cations of the respective dienophiles and of the respective Diels-Alder addition products. These radical cations could be detected directly and characterized unambiguously in the reacting solution by ESI-MS-MS. The identity was confirmed by comparison with MS-MS spectra of the authentic radical cations obtained by APCI-MS and by CID experiments of the corresponding molecular ions generated by EI-MS. In addition, substrates and products could be monitored easily in the reacting solution by APCI-MS.  相似文献   

12.
The persistence of alkyl substituted cyclobutadiene radical cations strongly depends on the method of generation and the size of the alkyl substituents used. Hindered rotation, the consequence of bulky substituents, is observed in the title compounds.  相似文献   

13.
The exposure of guanine in the oligonucleotide 5'-d(TCGCT) to one-electron oxidants leads initially to the formation of the guanine radical cation G(?+), its deptotonation product G(-H)(?), and, ultimately, various two- and four-electron oxidation products via pathways that depend on the oxidants and reaction conditions. We utilized single or successive multiple laser pulses (308 nm, 1 Hz rate) to generate the oxidants CO(3)(?-) and SO(4)(?-) (via the photolysis of S(2)O(8)(2-) in aqueous solutions in the presence and absence of bicarbonate, respectively) at concentrations/pulse that were ~20-fold lower than the concentration of 5'-d(TCGCT). Time-resolved absorption spectroscopy measurements following single-pulse excitation show that the G(?+) radical (pK(a) = 3.9) can be observed only at low pH and is hydrated within 3 ms at pH 2.5, thus forming the two-electron oxidation product 8-oxo-7,8-dihydroguanosine (8-oxoG). At neutral pH, and single pulse excitation, the principal reactive intermediate is G(-H)(?), which, at best, reacts only slowly with H(2)O and lives for ~70 ms in the absence of oxidants/other radicals to form base sequence-dependent intrastrand cross-links via the nucleophilic addition of N3-thymidine to C8-guanine (5'-G*CT* and 5'-T*CG*). Alternatively, G(-H)(?) can be oxidized further by reaction with CO(3)(?-), generating the two-electron oxidation products 8-oxoG (C8 addition) and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih, by C5 addition). The four-electron oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), appear only after a second (or more) laser pulse. The levels of all products, except 8-oxoG, which remains at a low constant value, increase with the number of laser pulses.  相似文献   

14.
Matrix EPR studies and quantum chemical calculations have been used to characterize the consecutive H-atom shifts undergone by the nitrogen-centered parent radical cations of propargylamine (1b*+) and allylamine (5*+) on thermal or photoinduced activation. The radical cation rearrangements of these unsaturated parent amines occur initially by a 1,2 H-atom shift from C1 to C2 with pi-bond formation at the positively charged nitrogen; this is followed by a consecutive reaction involving a second H-atom shift from C2 to C3. Thus, exposure to red light (lambda > 650 nm) converts 1b*+ to the vinyl-type distonic radical cation 2*+ which in turn is transformed on further photolysis with blue-green light (lambda approximately 400-600 nm) to the allene-type heteroallylic radical cation 3*+. Calculations show that the energy ordering is 1b*+ > 2*+ > 3*+, so that the consecutive H-atom shifts are driven by the formation of more stable isomers. Similarly, the parent radical cation of allylamine 5*+ undergoes a spontaneous 1,2-hydrogen atom shift from C1 to C2 at 77 K with a t1/2 of approximately 1 h to yield the distonic alkyl-type iminopropyl radical cation 6*+; this thermal reaction is attributed largely to quantum tunneling, and the rate is enhanced on concomitant photobleaching with visible light. Subsequent exposure to UV light (lambda approximately 350-400 nm) converts 6*+ by a 2,3 H-shift to the 1-aminopropene radical cation 7*+, which is confirmed to be the lowest-energy isomer derived from the ionization of either allylamine or cyclopropylamine. Although the parent radical cations of N, N-dimethylallylamine (9*+) and N-methylallylamine (11*+) are both stabilized by the electron-donating character of the methyl group(s), the photobleaching of 9*+ leads to the remarkable formation of the cyclic 1-methylpyrrolidine radical cation 10*+. The first step of this transformation now involves the migration of a hydrogen atom to C2 of the allyl group from one of the methyl groups (rather than from C1); the reaction is then completed by the cyclization of the generated MeN + (=CH2) CH2CH2CH2* distonic radical cation, possibly in a concerted overall process. In contrast to the ubiquitous H-atom transfer from carbon to nitrogen that occurs in the parent radical cations of saturated amines, the alternate rearrangements of either 1b*+ or 5*+ to an ammonium-type radical cation by a hypothetical H-atom shift from C1 to the ionized NH2 group are not observed. This is in line with calculations showing that the thermal barrier for this transformation is much higher (approximately 120 kJ mol-1) than those for the conversion of 1b*+ --> 2*+ and 5*+--> 6*+ (approximately 40-60 kJ mol-1).  相似文献   

15.
The unimolecular reactions of the radical cation of dimethyl phenylarsane, C6H5As(CH3)2, 1*+ and of the methyl phenylarsenium cation, C6H5As+CH3, 2+, in the gas phase were investigated using deuterium labeling and methods of tandem mass spectrometry. Additionally, the rearrangement and fragmentation processes were analyzed by density functional theory (DFT) calculations at the level UBHLYP/6- 311+G(2d,p)//UBHLYP/5-31+G(d). The molecular ion 1*+ decomposes by loss of a .CH3 radical from the As atom without any rearrangement, in contrast to the behavior of the phenylarsane radical cation. In particular, no positional exchange of the H atoms of the CH3 group and at the phenyl ring is observed. The results of DFT calculations show that a rearrangement of 1*+ by reductive elimination of As and shift of the CH3 group is indeed obstructed by a large activation barrier. The MIKE spectrum of 2+ shows that this arsenium cation fragments by losses of H2 and AsH. The fragmentation of the trideuteromethyl derivative 2-d3+ proves that all H atoms of the neutral fragments originate specifically from the methyl ligand. Identical fragmentation behavior is observed for metastable m-tolyl arsenium cation, m-CH3C6H4As+H, 2tol+. The loss of AsH generates ions C7H7+ which requires rearrangement in 2+ and bond formation between the phenyl and methyl ligands prior to fragmentation. The DFT calculations confirm that the precursor of this fragmentation is the benzyl methylarsenium cation 2bzl+, and that 2bzl+ is also the precursor ion fo the elimination of H2. The analysis of the pathways for rearrangements of 2+ to the key intermediate 2bzl+ by DFT calculations show that the preferred route corresponds to a 1,2-H shift of a H atom from the CH3 ligand to the As atom and a shift of the phenyl group in the reverse direction. The expected rearrangement by a reductive elimination of the As atom, which is observed for the phenylarsenium cation and for halogeno phenyl arsenium cations, requires much more activation enthalpy.  相似文献   

16.
Diaminohydroxymethyl (1) and triaminomethyl (2) radicals were generated by femtosecond collisional electron transfer to their corresponding cations (1+ and 2+, respectively) and characterized by neutralization-reionization mass spectrometry and ab initio/RRKM calculations at correlated levels of theory up to CCSD(T)/aug-cc-pVTZ. Ion 1+ was generated by gas-phase protonation of urea which was predicted to occur preferentially at the carbonyl oxygen with the 298 K proton affinity that was calculated as PA = 875 kJ mol-1. Upon formation, radical 1 gains vibrational excitation through Franck-Condon effects and rapidly dissociates by loss of a hydrogen atom, so that no survivor ions are observed after reionization. Two conformers of 1, syn-1 and anti-1, were found computationally as local energy minima that interconverted rapidly by inversion at one of the amine groups with a <7 kJ mol-1 barrier. The lowest energy dissociation of radical 1 was loss of the hydroxyl hydrogen atom from anti-1 with ETS = 65 kJ mol-1. The other dissociation pathways of 1 were a hydroxyl hydrogen migration to an amine group followed by dissociation to H2N-C=O* and NH3. Ion 2+ was generated by protonation of gas-phase guanidine with a PA = 985 kJ mol-1. Electron transfer to 2+ was accompanied by large Franck-Condon effects that caused complete dissociation of radical 2 by loss of an H atom on the experimental time scale of 4 mus. Radicals 1 and 2 were calculated to have extremely low ionization energies, 4.75 and 4.29 eV, respectively, which belong to the lowest among organic molecules and bracket the ionization energy of atomic potassium (4.34 eV). The stabilities of amino group containing methyl radicals, *CH2NH2, *CH(NH2)2, and 2, were calculated from isodesmic hydrogen atom exchange with methane. The pi-donating NH2 groups were found to increase the stability of the substituted methyl radicals, but the stabilities did not correlate with the radical ionization energies.  相似文献   

17.
A general method based solely on mass spectrometric techniques for the absolute configuration assignment of ortho, meta, or para isomers of acyl nitrobenzenes and derivatives is described. Instead of comparing the mass spectra of the three intact molecules of each positional isomer and investigating each one of the many sets of positional isomers, the method generalizes the effort by performing structural analysis on configurationally diagnostic fragment ions that are common for a given class of compounds. These ions must therefore retain the positional information of the parent molecules and be unequivocally distinguished. Nitrobenzoyl cations are common and stable fragment ions of most acyl nitrobenzenes and derivatives retaining the respective ortho, meta, or para configuration of the precursor molecules. The different NO2 and CO+ ring alignments profoundly influence their collision-induced dissociation and bimolecular reactivity, and the isomeric 2-, 3-, and 4-nitrobenzoyl cations are found to be unequivocally distinguished using both approaches. Absolute ortho, meta, or para positional assignment by tandem MS of every isomeric molecule of the acyl nitrobenzene class and derivatives forming detectable amounts of any of those diagnostic nitrobenzoyl cations is, therefore, possible. The ability to perform absolute (non-comparative) configuration assignment using such diagnostic ions is exemplified for a single test molecule of (2R)-(−)-2-methylglycidyl 4-nitrobenzoate. The general application of this absolute MS-only method for other classes of positional isomers is discussed.  相似文献   

18.
The Unimolecular mass spectrometric fragmentations of the molecular ions of 1,3-diphenylpropane, 1-(7-cycloheptatrienyl)-2-phenylethane and the 1-phenyl-2-tolylethanes and their [d5]phenyl analogues have been investigated by metastable ion techniques and measurements of ionization and appearance energies. By comparing the formation of [C7H7]+, [C7H8]+?, [C8H8]+? and [C8H9]+ it is shown that the molecular ions of the four diaryl isomers do not undergo ring expansion reactions of the aromatic nuclei prior to these fragmentations. Conversely, the molecular ions of the cycloheptatrienyl isomer suffer in part a contraction of the 7-membered ring. From these results and from the measured ionization and appearance energies lower limits to the activation energies of these skeletal isomerizations have been estimated yielding E > 33±5 kcal mol?1 formonoalkylbenzene, E > 20 2±5 kc mol?1 for 7-alkylcycloheptatriene and E > 40±5 kcal mol?1 for dialkylvbenzene positive radical ions. Upper limits can be deduced from literature evidence yielding E < 45 kcal mol?1 for monoalkylbenzene and E < 53 kcal 4mol?1 for dialkylbenzene positive radical ions. The activation energy thus estimated for monoalkylbenzene is in excellent agreement with the recently calculated value(s) for the toluene ion.  相似文献   

19.
Cyclopropylcarbinyl --> homoallyl and related rearrangements of radical ions (a) are frequently used as mechanistic "probes" to detect the occurrence of single electron transfer in chemical and biochemical processes, (b) provide the basis for mechanism-based drug design, and (c) are important tools in organic synthesis. Unfortunately, these rearrangements are poorly understood, especially with respect to the effect of substrate structure on reactivity. Frequently, researchers assume that the same factors which govern the reactivity of neutral free radicals also pertain to radical ions. The results reported herein demonstrate that in some cases structure-reactivity trends in radical ion rearrangements are very different from neutral radicals. For radical ions, delocalizations of both charge and spin are important factors governing their reactivity.  相似文献   

20.
Methyl or silyl dissociation in the CH(2)=CHCH(2)-XH(3) (a-XH(3)(*)(+)) and CH(2)=CHCH=CHCH(2)-XH(3) (p-XH(3)(*) (+)) radical cations (X = C, Si) yields a(+) or p(+) and XH(3)(*). Similarly, the radical anions a-CH(3)(*) (-) and p-CH(3)(*) (-) give the pi-delocalized anion and CH(3)(*) preferentially. In contrast, a-SiH(3)(*) (-) and p-SiH(3)(*-) prefer to dissociate into the pi-delocalized radical and silide. All reactions are endoergic: by 43-50 kcal mol(-)(1) in the radical cations, and easier to some extent in the radical anions, that require 29-33 (X = C) and 13-14 kcal mol(-)(1) (X = Si). The fragmentation energy profiles do not present significant barriers for the backward process in the case of the radical cations. All radical anions exhibit an energy maximum along the dissociation pathway, but the barrier is lower than the dissociation limit. Fragmentation is "activated" more in the anions than in the cations with respect to homolysis in the corresponding neutrals (that requires 72-81 kcal mol(-)(1)). Wave function analysis indicates that the C-X bond cleavage in the hydrocarbon radical ions, although formally comparable to a homolytic process, is at variance with this model, due to the spin recoupling of one of the two C-X bond electrons with the originally unpaired electron. This is basically true also for the silyl-substituted radical anions, in which the initial more delocalized charge distribution might suggest some heterolytic character of the bond cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号