首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Films of poly(vinylidene fluoride), PVDF, and poly(vinylidene fluoride – trifluoroethylene), P(VDF-TrFE), containing corn starch and latex of natural rubber as additives were produced by compressing/annealing forming blends visioning applications as biomaterials. Therefore, considering the possible applications of these blends, a basic characterization has been carried out targeting to infer on their thermomechanical properties. The polymer films (PVDF and P(VDF-TrFE)) with different percentage of additives were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), differential scanning calorimetry (DSC), and dynamical-mechanical analysis (DMA). The compressing/annealing process allowed discarding the necessity of using the solvents to dissolve either PVDF or P(VDF-TrFE), which are usually toxic to human. The results showed that the polymers do not interact chemically with the additives with the blends showing high thermal stability and elasticity modulus at the same order of magnitude of the bone, for instance. The SEM imaged revealed that the blends present morphological structures of typical physical mixtures where each material can be identified within the blends.  相似文献   

2.
Nanostructured poly(vinylidene fluoride) (PVDF)/polyamide 11 (PA 11) blends of various compositions were prepared using a high-shear extruder. The lamellar morphology of the nanoblends consisting of two crystalline constituents was investigated by transmission electron microscopy (TEM) and temperature-variable small-angle X-ray scattering (SAXS). The average lamellar long period and the thickness of the amorphous part for the high-shear-processed blends were larger than those for the low-shear-processed sample, indicating the molecular incorporations between PVDF and PA 11 upon high-shear processing. A novel scattering peak, corresponding to the long period of 25.2 nm, is observed when the SAXS measurements were carried out at a temperature between the melting points of PVDF and PA 11. The structural change with time at high temperature was investigated in situ by SAXS. It was found that the intensity of the new peak increased with time at high temperature and the peak position slowly shifted in the low-angle direction, indicating a gradual increase of the long period for PA 11 crystals upon annealing. The novel scattering peak originates from the enlarged PA 11 lamellar long period in the nanodomain because the peak cannot be observed for the same blends prepared by low-shear-processing. It is considered that the melt PVDF chains are gradually diffused into the galleries of PA 11 lamellae in the PA11 nanodomain, which enlarged the long period of PA 11 because of the more favorable interaction at high temperature. The chain diffusion can only occur from the interface between the PVDF and PA 11 phases, and therefore, almost no change was observed for the long period of bulk PA 11 crystals in the nanoblend.  相似文献   

3.
邱兆斌 《高分子科学》2014,32(9):1139-1148
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-24 mol% hexamethylene succinate) (PBHS), both crystalline polymers, formed melt-miscible crystalline/crystalline polymer blends. Both the characteristic diffraction peaks and nonisothermal melt crystallization peak of each component were found in the blends, indicating that PVDF and PBHS crystallized separately. The crystalline morphology and crystallization kinetics of each component were studied under different crystallization conditions for the PVDF/PBHS blends. Both the spherulitic growth rates and overall isothermal melt crystallization rates of blended PVDF decreased with increasing the PBHS composition and were lower than those of neat PVDF, when the crystallization temperature was above the melting point of PBHS component. The crystallization mechanism of neat and blended PVDF remained unchanged, despite changes of blend composition and crystallization temperature. The crystallization kinetics and crystalline morphology of neat and blended PBHS were further studied, when the crystallization temperature was below the melting point of PBHS component. Relative to neat PBHS, the overall crystallization rates of the blended PBHS first increased and then decreased with increasing the PVDF content in the blends, indicating that the preexisting PVDF crystals may show different effects on the nucleation and crystal growth of PBHS component in the crystalline/crystalline polymer blends.  相似文献   

4.
Polycarbonate (PC) and poly(vinylidene fluoride) (PVDF) are two immiscible polymers which form two-phase blends with weak interfacial adhesion and high interfacial tension. This situation may be changed by the addition of poly(methyl methacrylate) (PMMA), which concentrates preferably in the PVDF-rich phase, but also at the PVDF/PC interface. The interfacial activity of PMMA was estimated by the measurement of the interfacial adhesion and interfacial tension in relation to the PMMA content in the PVDF/PC blends. The interfacial adhesion between PC and homogeneous PVDF/PMMA blends of various compositions was measured by the dual cantilever beam technique. The imbedded fiber retraction method was used for the measurement of the interfacial tension. A very beneficial effect was observed when PVDF was premixed with PMMA amounts increasing up to ca. 35 wt.-%. Beyond that content, the improvement tends to level off.  相似文献   

5.
A novel capacitor with high dielectric constant (ε) has been developed by blending poly(vinylidene fluoride) (PVDF) with polyamide (PA11). The blends show high dielectric constants (εblend = 40), which give better frequency stability (1 MHz), and excellent mechanical properties. Based on certain volume fractions, the measured dielectric constants (ε blend ) were found to exceed those of the corresponding polymers, in contrasted to conventional composites, where εpolymerA < εcomposite < εpolymerB. SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial polymer‐polymer interactions. DSC and XRD demonstrate that blending PA11 with PVDF affects the crystalline behavior of each component. However, the PA11/PVDF blends exhibit a slightly high dielectric loss (tanδ ≈ 0.17), which is a great disadvantage to a capacitor. Adding a copolymer of styrene and maleic anhydride decreased the dielectric loss (tanδ ≈ 0.057) and increased the dielectric constant (εblend = 60). Our findings suggest that the high‐ε polymeric blends created represent a novel type of material that is flexible and easy to process, of relatively high dielectric constant, of high breakdown strength and, moreover, is suited to applications in flexible electronics.

  相似文献   


6.
We report studies of the temperature-dependence of the ESR spectrum of the nitroxide spin radical 4-(2-bromoacetamide)-2,2,6,6 tetramethyl-1-oxyl piperidine (BRAMO) dispersed in poly(vinylidene fluoride) (PVDF), poly(methyl methacrylate) (PMMA), poly(vinyl acetate) (PVAc), and PVDF/PMMA and PVAC/PMMA blends of varying composition. In PVDF/PMMA blends which show a single composition-dependent Tg, the mobility of BRAMO is identical to that in pure PMMA. On the other hand, in PVAC/PMMA blends, the mobility of BRAMO corresponds to that in pure PVAC. The results suggest that (1) BRAMO selectively binds to polymers based on hydrogen bonding affinity, (2) the spin probe is sensitive to segmental motions on a length scale shorter than those which give rise to the glass transition, and (3) compatible polymer blends are heterogeneous on the length scale of the BRAMO probe (ca. 8.3 Å).  相似文献   

7.
The influence of weathering on the fire retardancy of polymers is investigated by means of a cone calorimeter test, before and after artificial weathering. The surface degradation was monitored using different techniques (ATR-FTIR, microscopy, colour measurement). Different kinds of polymeric materials were chosen, all as they are used in practice: polycarbonate (PC) blends, polyamide (PA) and polypropylene (PP) flame-retarded with arylphosphate, melamine cyanurate (MC) and intumescent formulation based on ammonium polyphosphate (APP), respectively.All samples show material degradation at the surface due to weathering. No significant weathering influence occurs on the flame retardancy when it is a bulk property, as was observed for aryl phosphates in PC blends and MC in PA. When the fire retardancy is dominated by a surface mechanism, dependence on the duration of weathering is detected: for intumescent formulations based on ammonium APP in PP, a worsening in the formation of the intumescent network was observed.  相似文献   

8.
In this study, the polymer blends composed of polyvinylidene fluoride (PVDF) and polyamide 6 (PA6) were prepared via precipitation method, and then, the effects of PA6 on the crystallization behavior of PVDF, including the polymorphism and crystallization kinetice, were systematically investigated. For this aim, time-resolved Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimeter were utilized to study the influence of PA6 on crystallization behavior of PVDF. Furthermore, the morphologic images from scanning electron microscopy also supply the corresponding evidences. The results obtained shows that PA6 is immiscible with PVDF, while the PA6 component could form polar environment around the PVDF segment which is conducive to the formation of β phase of PVDF. In addition, calorimetric studies via DSC on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics demonstrated conclusively that PA6 segments could effectively hinder the subsequent PVDF crystallization process because of the interfacial hydrogen bonds and incompatibility between PVDF and PA6.  相似文献   

9.
iPP/sPP, iPP/rPP, iPP/PVDF and iPP/PA-6 blends, and their β-nucleated forms were prepared in the present study. The components of iPP/sPP and iPP/rPP blends are compatible in the molten state. The phase structure of the melt of iPP/PVDF and iPP/PA-6 blends is heterogeneous. The melting and crystallisation characteristics as well as the structure and polymorphic composition of these blends were studied by polarised light microscopy (PLM) and differential scanning calorimetry (DSC). When semicrystalline polymers are added to iPP, the most important factor of the formation a blend with β-crystalline phase is the α-nucleation effect of the second polymer. In the case of polymers with an α-nucleating effect, the temperature range of their crystallisation should be lower than that of β-iPP. β-nucleated iPP/PVDF and iPP/PA-6 blends are extreme examples showing that completely β-iPP matrix can not form even in the presence of a highly effective β-nucleant, because of the strong α-nucleating ability and higher crystallisation temperature range of PVDF and PA-6. We found that the β-crystallisation tendency of random propylene copolymers can be enhanced by adding an iPP homopolymer.  相似文献   

10.
采用流延成膜法制备了4种增容改性的聚偏氟乙烯(PVDF)与聚醚型热塑性聚氨酯弹性体(TPU)固体共混物(PVDF/TPU).结合分子动力学模拟研究了PVDF/TPU的相互作用,并探讨了其增容机理.研究结果表明,与PVDF/TPU-1,PVDF/TPU-2及PVDF/TPU-3相比,加入γ-缩水甘油醚氧丙基三甲氧基硅烷-端氨基丁腈橡胶(GPTMS-ATBN)后,PVDF/TPU-4的2个玻璃化转变温度(Tg)相互靠近,两相界面存在分布梯度,构成了双相连续的微观结构,表明GPTMS-ATBN增容PVDF/TPU共混物具有显著效果.同时,PVDF/TPU-4的共混结合能大幅减小,二面角扭转能、键角弯转能等明显增大,表明PVDF及TPU与GPTMS-ATBN之间发生相互作用.傅里叶红外光谱(FTIR)及X射线光电子能谱(XPS)证实了GPTMS-ATBN增容PVDF/TPU的机理为GPTMS-ATBN中ATBN链段与PVDF彼此缠绕,相互混溶,而水解后两端GPTMS中大量羟基与TPU分子链中氨基甲酸酯键及醚键相互吸附,从而生成了氢键.  相似文献   

11.
Blends of ethylene‐glycidyl methacrylate copolymer (PE‐GMA) and polyamide 6 (PA6) were prepared in a corotating twin screw extruder. Two processing temperatures were used in order to disperse PA6 in two forms: at high temperature in the molten state in molted PE‐GMA Matrix (emulsion type mixture) and at lower temperature as fillers in molted PEGMA matrix (suspension type mixture). Processed blends were analyzed by scanning electron microscopy and dynamic mechanical experiments to probe the reactivity in the extruder and the compatibilization phenomena. The dependence of the morphology and the rheological properties of PE‐GMA/PA6 blends on blend composition and screw rotational speed was also investigated and is discussed in the paper. The results show that dispersion of the two polymers in the molten state leads to a higher level of interfacial reaction. They also show that whatever the screw rotational speed and the temperature of extrusion are, the rate of interfacial reaction in PE‐GMA/PA6 blends is higher for 50/50 PE‐GMA/PA blends than for 70/30 PE‐GMA/PA blends. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
马来酸酐接枝热塑性弹性体在PP/PA6共混物中的作用   总被引:10,自引:0,他引:10  
研究了马来酸酐接枝热塑性弹性体 (TPEg )作为增容剂对聚丙烯 (PP) 尼龙 6 (PA6 )共混体系的相容性、相态以及物理力学性能的影响 .研究结果表明TPEg的加入大大改善了PP PA6共混体系的相容性 ,且随TPEg含量的增大分散相粒径明显降低 ,共混物的韧性以及延展性大大提高 ,同时拉伸强度及模量仍保持较好的水平 .TPEg增容的PP PA6共混物的非等温结晶行为的研究表明 ,共混物中PP和PA6的结晶行为不同于各自纯的聚合物 ,PA6作为成核剂使PP的结晶温度提高 ;而PA6由于TPEg的加入 ,出现分级结晶现象 ,一级结晶温度略低于纯PA6的结晶温度 ,且随TPEg含量增大结晶受阻 ,二级结晶温度与PP的接近 .由于PP、PA 6以及TPEg之间存在较强的相互作用 ,三元共混物中PP及PA6的玻璃化转变温度分别较其纯聚合物升高 .基于上述结果 ,提出了本共混体系的结构模型  相似文献   

13.
This study investigates the processing of blends of polyamide 6 (PA6) and polyamide 12 (PA12) by selective laser sintering (SLS) using a CO2 laser. Powder properties of undiluted polymers, mixture composition, and processing parameters, as well as their influence on the microstructure of the specimens manufactured, were evaluated. Polyamides showed higher absorption of laser energy during the sintering of blend specimens, with subsequent thermal energy transfer to the melting of the polymeric phases. The structure of parts obtained by SLS is dependent on the process parameters and the characteristics of the powder material to be processed. The microstructures of PA6/PA12 blend specimens were heterogeneous, with co-continuous and disperse phases depending on the quantity of PA12. The porosity and crystallinity also changed as a function of the component proportions. The use of polymeric blends can increase the range of structures and properties of SLS parts.  相似文献   

14.
Various PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends were selected for mechanical testing in compression. At low PVDF content (less than 50/50 w/w), the blends remain amorphous and PVDF and PMMA are fully miscible. In PVDF-richer blends, PVDF crystallizes in part, leading to a PMMA-enriched homogeneous amorphous phase. In this study, the degree of crystallinity was set at equilibrium by appropriate annealing of the samples before testing. Mechanical analysis was focused on the low deformation range, and especially on the yield region. Depending on the test temperature and blend composition, three types of response were identified, depending on whether plastic deformation is influenced: 1) by the PMMA secondary relaxation motions, 2) by the PVDF/PMMA glass transition motions, or 3) by the crystallite-constrained PVDF chains.  相似文献   

15.
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-butylene adipate) (PBSA) are crystalline/crystalline polymer blends with PVDF being the high-T(m) component and PBSA being the low-T(m) component, respectively. PVDF/PBSA blends are miscible as shown by the decrease of crystallization peak temperature and melting point temperature of each component with increasing the other component content and the homogeneous melt. The low-T(m) component PBSA presents various confined crystalline morphologies due to the presence of the high-T(m) component PVDF crystals by changing blend composition and crystallization conditions in the blends. There are mainly three different types of crystalline morphologies for PBSA in its miscible blends with PVDF. First, crystallization of PBSA commenced in the interspherulitic regions of the PVDF spherulites and continued to develop inside them in the case of PVDF-rich blends under two-step crystallization conditions. Second, PBSA spherulites appeared first in the left space after the complete crystallization of PVDF, contacted and penetrated the PVDF spherulites by forming interpenetrated spherulites in the case of PVDF-poor blends under two-step crystallization condition. Third, PBSA spherulites nucleated and continued to grow inside the PVDF spherulites that had already filled the whole space during the quenching process in the case of PBSA-rich blends under one-step crystallization condition. The conditions of forming the various crystalline morphologies were discussed.  相似文献   

16.
PSt-b-PEO增容PA6/PS共混体系的研究   总被引:1,自引:0,他引:1  
采用动态力学方法(DMA),形态学方法(SEM),研究了PSt b PEO存在下尼龙6(PA6)/聚苯乙烯(PS)共混体系的相容性.研究表明,PA6和PS的简单共混体系,分散相相畴尺寸大,相界面清晰,断裂面光滑,呈脆性断裂,相容性极差,属不相容体系.而加入少量PSt b PEO后分散相尺寸变小,界面层变厚,界面粘结力增强,表现出韧性特征.  相似文献   

17.
Compounds were prepared with isotactic polypropylene (iPP) matrix and recycled polyamide 66 fibres (PA66), which were obtained as soft waste in industrial production process. Blends with pristine PA66 pellets were prepared as comparison. The blends showed the presence of PA66 particles dispersed in the PP continuous phase. Considering the incompatibility of the two polymers the addition of isotactic polypropylene grafted with maleic anhydride (iPPgMA) as compatibilizer was investigated: the blends were characterized by thermal, mechanical, dynamic-mechanical and morphological analyses. The presence of the compatibilizer significantly influences the morphology of the blends, inducing a finer dispersion and promoting interfacial adhesion. The characterization of pristine and recycled PA66 did not show a meaningful difference in the value of molecular weight, on the other hand marked differences were presented in the flexural moduli of the two materials; analogous differences were exhibited by the blends: compounds prepared with recycled PA66 showed flexural moduli higher than compatibilized blends with pristine PA66.  相似文献   

18.
Blends of poly(vinylidene fluoride) (PVDF), silicone rubber (SR) and flurorubber (FKM) were prepared via peroxide dynamic vulcanization. The effect of FKM loading on the morphology, mechanical properties, crystallization behavior, rheology and dynamic mechanical properties of the PVDF/SR/FKM ternary blends was investigated. A “network” was observed in the PVDF/SR binary blends, which disappeared in the ternary blends, but a core-shell-like structure was formed. The mechanical properties were significantly improved. The Izod impact strength of PVDF/SR/FKM blend with 19 wt% FKM was 18.3 kJ/m2, which was 3–4 times higher than the PVDF/SR binary blend. The complex viscosity and storage modulus of the PVDF/SR/FKM blends decreased with increasing FKM content, hence the processability was improved. The increase of FKM content seemed to show a favorable effect on the crystallization of the PVDF component. It promoted the nucleation process of PVDF, leading to increased polymer crystallization rate and higher crystallization temperature. The glass-rubber transition temperature of the PVDF phase moved to a lower temperature.  相似文献   

19.
Nanostructured poly(vinylidene fluoride) (PVDF)/polyamide 11 (PA11) blends have been melt‐processed using a high‐shear extruder. Uniaxially oriented blended films were fabricated by hot rolling to prepare ferroelectic films. The effects of rolling temperature and draw ratio on the crystal forms of both PVDF and PA 11 were investigated by means of Fourier transform infrared spectra (FTIR) and wide‐angle X‐ray diffraction (WAXD). It was shown that hot rolling in the range of 25–110 °C results in the crystal form transformation from the nonpolar α‐form into the polar β‐form for PVDF. The content and orientation function of β‐crystallites are strongly dependent upon the rolling temperature and the draw ratio. The highest content of well‐oriented β‐crystallites was achieved with a draw ratio of 4.0 upon rolling at 80 °C. At the same time, the content of the α‐form of PA11 in the blend was also found to decrease by hot rolling. The ferroelectric properties (DE hysteresis) of the oriented blended films were measured. The remanent polarization of the PVDF/PA11 = 90/10 blend is as high as 91 mC/m2, which is about 1.2 times higher than that of pure PVDF. The DE hysteresis curves and the temperature dependence of the piezoelectric stress coefficients of the high‐shear‐processed sample suggested that the formation of nano‐dispersed structures resulted in the improvement of the remanent polarization and thermal characteristics at a temperature higher than 80 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2707–2714, 2007  相似文献   

20.
Novel polymer composites PEN/PVDF were prepared from poly(arylene ether nitrile) (PEN) and poly(vinylidene fluoride) (PVDF) via solution mixing. Due to the toughening effect of PVDF, PEN/PVDF blends with 5 wt % PVDF exhibit higher tensile strength (106 MPa) and breaking elongation (8.09%) than pure PEN does. Because of introduction of PVDF and interfacial polarization, the dielectric constant of PEN/PVDF blends at 1 kHz and room temperature increases from 3.3 to 4.5 with increasing content of PVDF. The dissipation factor (tanδ) of PEN/PVDF blends is relatively low (<0.04) in a very wide frequency range from 250 Hz to 100 kHz. The PEN/PVDF blends show certain piezoelectric behavior (d 33 from 0.9 to 1 pC/N) due to the contribution of PVDF. After polarization, the piezoelectric coefficient d 33 somewhat increases. The results suggest that PEN/PVDF blends will have potential application in electronic information fields, especially in film capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号