首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structural properties of ionic liquid-low-molecular substance binary mixtures were studied using the integral equation theory. Main attention was paid to the dependence of the characteristic scale of the structural inhomogeneities of a mixture on the length of the cation tail at different concentrations of the low-molecular addition. The typical morphology of pure ionic liquid is preserved in a mixture, the low-molecular admixture leading to a set of the characteristic scales of ordering of the mixture components in the nanometer range.  相似文献   

2.
Two approaches are used to study the adsorption of components from polydisperse polymer melts. The distribution of components of binary mixture of homopolymers differing only in molecular masses near the neutral wall is studied using the Scheutjens-Fleer lattice model. An increase in the concentration of component with lower molecular mass near the wall observed under the considered conditions is caused by a decrease in the losses of configurational entropy of polymer chains. The adsorption of low-molecular-mass component is calculated for a large set of model parameters. The equation describing adsorption as a function of mixture concentration and parameter (N 1/N 2 ? 1) characterizing the difference in chain lengths of N 1 and N 2 components is proposed. The proposed equation is a specific case of equation, which was derived using Flory-Huggins lattice theory and the data on the dependences of surface tension on the composition of polydisperse melts.  相似文献   

3.
《Fluid Phase Equilibria》1999,163(1):43-60
In order to calculate spinodals for polymer systems with an equation of state (EOS), we developed a stability theory using continuous thermodynamics. Here, the mixture considered consists of a polydisperse polymer and two monodisperse components as for example a solvent and a gas. We derived the spinodal equation on the base of the segment-molar Helmholtz energy of the mixture. As a result, a determinant similar to that of the monodisperse case is obtained, but the polydisperse polymer is identified by its weight average of the molecular weight. Furthermore, our paper provides the equations for the cloud-point curve derived with the aid of continuous thermodynamics. The final equations are applied to the system polystyrene+cyclohexane+carbon dioxide using the EOS of Sako, Wu and Prausnitz (SWP-EOS). For parameter fit and to prove the accuracy of the treatment, experimental data of the high-pressure equilibrium of the binary subsystems and of the ternary system were taken from literature.  相似文献   

4.
The title compound, C20H19NO5S2, crystallizes as an almost 2:1 mixture of two molecular orientations (described as Orient‐A and Orient‐B). The consequences of these two orientations is the formation of three types of N—H...O hydrogen‐bonded dimers in which the (Orient‐A + Orient‐A) dimers are likely to be the most stable, while the mixed (Orient‐A + Orient‐B) dimers are more frequent. Extra interactions in the form of C—H...O and C—H...π interactions act to further stabilize these dimers and probably allow the less energetically favourable (Orient‐A + Orient‐B) and (Orient‐B + Orient‐B) hydrogen‐bonded dimers to exist by preventing their conversion to (Orient‐A + Orient‐A)‐only hydrogen‐bonded dimers during the crystal‐growth process.  相似文献   

5.
It has been shown, using the significant structure theory of liquids, that a lower critical solution temperature behavior as well as a upper critical solution temperature behavior can be expected for polymer–polymer systems and that a phase diagram of closed-loop-type in a polymer–polymer–solvent system can be possible. In this article the sublimation energy of a mixture was expressed as a quadratic form of segment surface fractions on pure components rather than that of mole fractions, and the effect of the segment surface fractions on critical compositions was explained. The calculated partial miscibilities were in good agreement with the experiment.  相似文献   

6.
The combined “Gas Chromatograph — Laser Optoacoustic Spectrometer” (GC-LOAS) has been used to perform selective analysis of a mixture of fatty acid esters stereocisomers and a mixture of methylcyclopentadiene positional isomers. The GCLOAS system allows simultaneous recording of the retention time of the components in the mixture under analysis and their IR absorption spectra in the spectral operating range of the 12CO2, 13CO2 and HeNe lasers. It has been shown that the hydrogenated sample of fatty acids contains a lot of trans-isomer. Its content has been quantitatively estimated. The identification of methylcyclopentadiene isomers (both monomers and dimers) has been carried out, too.  相似文献   

7.
Starting from the concept of free volume dissimilarity, a simple modification of the non-combinatorial part of the Flory—Huggins equation is proposed. According to this modification, a new relation is derived to calculate the activity of a solvent in mixture with a polymer. It contains two empirical parameters, whose values can be determined by regressing binary vapour—liquid experimental data. The proposed equation has been applied to several binary systems which can be grouped in three classes of mixtures: non-polar/non-polar, non-polar/polar and polar/polar. Satisfactory results have been obtained in the case of non-polar or slightly polar mixtures, however, for strongly polar systems, the new equation is inadequate. The proposed modification of the Flory—Huggins theory is particularly suitable for engineering calculations.  相似文献   

8.
The accurate representation of nitrogen-containing heterocycles is essential for modeling biological systems. In this study, the general effective fragment potential (EFP2) method is used to model dimers of benzene and pyridine, complexes for which high-level theoretical data -including large basis spin-component-scaled second-order perturbation theory (SCS-MP2), symmetry-adapted perturbation theory (SAPT), and coupled cluster with singles, doubles, and perturbative triples (CCSD(T))-are available. An extensive comparison of potential energy curves and components of the interaction energy is presented for sandwich, T-shaped, parallel displaced, and hydrogen-bonded structures of these dimers. EFP2 and CCSD(T) potential energy curves for the sandwich, T-shaped, and hydrogen-bonded dimers have an average root-mean-square deviation (RMSD) of 0.49 kcal/mol; EFP2 and SCS-MP2 curves for the parallel displaced dimers have an average RMSD of 0.52 kcal/mol. Additionally, results are presented from an EFP2 Monte Carlo/simulated annealing (MC/SA) computation to sample the potential energy surface of the benzene-pyridine and pyridine dimers.  相似文献   

9.
We have reconsidered the phase behavior of a polydisperse mixture of charged hard spheres (CHSs) introducing the concept of minimal size neutral clusters. We thus take into account ionic association effects observed in charged systems close to the phase boundary where the properties of the system are dominated by the presence of neutral clusters while the amount of free ions or charged clusters is negligible. With this concept we clearly pass beyond the simple level of the mean spherical approximation (MSA) that we have presented in our recent study of a polydisperse mixture of CHS [Yu. V. Kalyuzhnyi, G. Kahl, and P. T. Cummings, J. Chem. Phys. 120, 10133 (2004)]. Restricting ourselves to a 1:1 and possibly size-asymmetric model we treat the resulting polydisperse mixture of neutral, polar dimers within the framework of the polymer MSA, i.e., a concept that--similar as the MSA--readily can be generalized from the case of a mixture with a finite number of components to the polydisperse case: again, the model belongs to the class of truncatable free-energy models so that we can map the formally infinitely many coexistence equations onto a finite set of coupled, nonlinear equations in the generalized moments of the distribution function that characterizes the system. This allows us to determine the full phase diagram (in terms of binodals as well as cloud and shadow curves), we can study fractionation effects on the level of the distribution functions of the coexisting daughter phases, and we propose estimates on how the location of the critical point might vary in a polydisperse mixture with an increasing size asymmetry and polydispersity.  相似文献   

10.
The chitosan derivatives containing antiradical fragments in the polymer side chain have been synthesized by interaction of the partially quaternized chitosan(QCH) with gallic acid (GA). The antioxidative activity of the chitosan derivatives — QCH-GA was investigated by thiobarbituric method. Introduction of GA fragment in amount of 2. 0 mass % in the structure of QCH resulted in appearance of pronounced antioxidative activity of the polymeric system contrary to initial chitosan for which this activity was equal to zero. It was found that QCH-GA was a markedly higher effective inhibitor in a peroxidase — catalyzed oxidation of the model amine than the low-molecular antioxidant — GA. Targetted chitosan modification resulted in a substantial raize of the polymeric antimutagenic (at γ-irradiation) efficiency, which for QCH-GA was equal to 92% in comparison with the protective effect of the initial chitosan — 42% (plant test-system, barley seeds, γ = 15 Gr).  相似文献   

11.
《Fluid Phase Equilibria》2004,217(2):233-239
The Perturbed-Chain SAFT (PC-SAFT) equation of state is applied to pure polar substances as well as to vapor–liquid and liquid–liquid equilibria of binary mixtures containing polar low-molecular substances and polar co-polymers. For these components, the polar version of the PC-SAFT model requires four pure-component parameters as well as the functional-group dipole moment. For each binary system, only one temperature-independent binary interaction kij is needed. Simple mixing and combining rules are adopted for mixtures with more than one polar component without using an additional binary interaction parameter. The ability of the model to accurately describe azeotropic and non-azeotropic vapor–liquid equilibria at low and at high pressures, as well as liquid–liquid equilibria is demonstrated for various systems containing polar components. Solvent systems like acetone–alkane mixtures and co-polymer systems like poly(ethylene-co-vinyl acetate)/solvent are discussed. The results for the low-molecular systems also show the predictive capabilities of the extended PC-SAFT model.  相似文献   

12.
The diffusion of polymer chains in miscible polymer blends with large dynamic asymmetry—those where the two blend components display very different segmental mobility—is not well understood yet. In the extreme case of the blend system of poly(ethylene oxide) (PEO) and poly(methyl methacrylate)(PMMA), the diffusion coefficient of PEO chains in the blend can change by more than five orders of magnitude while the segmental time scale hardly changes with respect to that of pure PEO. This behavior is not observed in blend systems with small or moderate dynamic asymmetry as, for instance, polyisoprene/poly(vinyl ethylene) blends. These two very different behaviors can be understood and quantitatively explained in a unified way in the framework of a memory function formalism, which takes into account the effect of the collective dynamics on the chain dynamics of a tagged chain. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1239–1245  相似文献   

13.
A comparative study of the phase diagrams and morphology of blends of poly(2‐ethylhexylacrylate) and low molecular weight liquid crystals (LCs) prepared under different conditions is presented. Two LCs are used; one is the 4‐cyano‐4′‐n‐pentyl‐biphenyl and the other is the eutectic mixture of cyanoparaphenylenes known as E7. Two series of blends are prepared under different conditions. The first series is obtained by the polymerization induced phase separation (PIPS) process under UV‐curing starting from a monomeric mixture, while the second series is prepared by a combination of the solvent induced phase separation and the thermally induced phase separation process starting from a mixture containing a commercial polymer with known molecular weight. Using gel permeation chromatography, it is found that the polymer molecular weight of the UV‐cured systems decreases with the concentration of LC in the precursor mixture. The experimentally obtained phase diagrams of these two series of systems show a miscibility shift at the composition where the molar mass of the polymer in the PIPS/UV blend exceeds that of the commercial polymer. Data are rationalized in terms of the Flory‐Huggins theory of isotropic mixing and the Maier‐Saupe theory of nematic order. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 18–27, 2007  相似文献   

14.
Grubbs et al. reported a successful method for synthesizing high-molecular weight cyclic polymers without the intermediacy of linear chains (Science 2002, 297, 2041). In spite of its practical significance, there are, however, important questions about this process that remain open. Here it is presented a theory of ring-expanding polymerization mediated by ring-ring equilibria, and driven by entropy only, that addresses the observed results. In particular the theory predicts the existence of a critical concentration (CC) below which only low-molecular weight cyclic oligomers are formed and above which the entire system is predicted to collapse into a single giant ring molecule, the process resembling an irreversible one. Dilution of the system below the CC is predicted to restore the mixture of low-molecular weight cyclic oligomers.  相似文献   

15.
Based on hard-sphere limit of binary mixtures with different molecular size of components a theory has been developed for calculating activities of solvents in polymer/solvent mixtures. The theory considers various chain configurations for polymer molecules, varying from extended chain to the coiled chain. According to this theory the activity of solvent can be calculated from molecular weights (MWs) and densities as the only input data. The only adjustable parameter in the calculations, is the hard-sphere diameter of polymer, which provides useful criteria for the judgement on the chain configuration of polymer.The activity calculations have been performed for seven binary mixtures of polymer/solvent and compared with experimental data at various temperatures and for a varying range of MWs of polymers.The solvents in the mixtures were both of polar and nonpolar natures. The activity calculations for the same systems were performed by the well-known Flory-Huggins theory. Comparing the results of calculations with those of Flory-Huggins theory indicates that, the proposed theory is able to predict the activities of the solvent with good accuracy.The radius of gyration, excluded volume and interaction parameter for polymer chain have been calculated using the parameter obtained in the new theory. The calculated interaction parameter in the new theory, is interpreted in terms of attraction, repulsion and interchange energy of polymer and solvent in the mixture.  相似文献   

16.
A molecular theory for small-angle neutron scattering from polymer mixtures is reviewed and extended to consider multiphase polymer systems such as block copolymers and their blends with homopolymers. Methods are developed for the isolation of scattering functions for individual components in these blends. These methods rely on two contrast-matching techniques: the concept of “composition matching,” where a mixture of deuterium-labeled and protonated species is used to match the contrast of a third component; and the synthesis of “phase-matched” block copolymers, where the contrast of the block copolymer sequences are matched. Methods are discussed specifically for the isolation of single chain and single sequence scattering functions for diblock and triblock copolymers, their blends with homopolymers, and star copolymers.  相似文献   

17.
The transamidation reaction in a polyamic acid solution has been investigated using size-exclusion chromatography and low-angle light scattering. Mixtures of a high-molecular weight (DP = 150) and a low-molecular weight (DP = 10) polymer and of the high-molecular weight polymer with monomer were studied. Mixtures were made at high and low concentrations. The polyamic acid studied is the product of the polycondensation of 3,3′,4,4′-biphenyltetracarboxylic acid dianhydride (BPDA) with oxydianiline (ODA). In all cases the molecular weight distribution equilibrated with time to a most-probable distribution with a DP consistent with the stoichiometry of the mixture. Equilibration required about 2 weeks for mixtures of 10% by weight at ambient temperatures. The effect of addition of a small amount (5%) of low-molecular weight material to sample of high-molecular weight is dramatic; for DP = 150 the molecular weight is decreased by more than one-half. In an entangled solution or melt, this would reduce the viscosity by an order of magnitude.  相似文献   

18.
A formalism has been developed to treat hydrogen-bonded A—H…?B systems within the CNDO /2 and the MINDO /3 methodologies. In this formalism the interactions are divided into three distinct classes; those between (a) two hydrogen-bonded atoms, (b) one hydrogen-bonded and non-hydrogen-bonded atom, and (c) two non-hydrogen-bonded atoms. The last class of interactions is treated solely by the existing CNDO /2 or MINDO /3 method. For A –H…?B systems, the core resonance integrals are individually parametrized depending upon the class of the interaction. Three types of A—H…?B systems have been thus far parametrized. Nine hydrogen-bonded dimers have been studied using the new formalism and the current CNDO /2 and the MINDO /3 methods. MINDO /3 predicts very large interatomic (AB) distances for the equilibrium geometry, and relatively small stabilization values for the hydrogen-bond energies. CNDO/2 predicts the reverse. The new formalism for both CNDO /2 and MINDO /3 predicts accurate geometries as well as energies for all nine dimers. The new formalisms are called CNDO /2H and MINDO /3H. A general discussion of the nature of hydrogen bonding as exhibited by CNDO /2H and MINDO /3H is presented.  相似文献   

19.
For statistic copolymers of styrene and n-butyl methacrylate, the relation between the glass transition temperature and the chemical composition or molecular weight of the copolymers has been determined. Further, the dependence of the glass transition temperature on the composition of binary and ternary blends from statistical poly (styrene-co-n-butyl methacrylates) of a nearly equal chemical composition but a very different molecular weight has been studied. Among several equations considered for the correlation between glass transition temperature and composition of the mentioned copolymers with relatively low molecular weights, the Gordon/Taylor and Couchman equations gave the best agreement with the experimental results. For the glass transition temperature of poly(styrene-co-n-butyl methacrylate) with an n-butyl methacrylate content of about 30 wt % in dependence on the molecular weight, the Kanig-Ueberreiter and Fox-Flory equations proved to be useful for the examined molecular weight range. The glass transition temperatures of the polymer blends have been studied for a low/high-molecular component system, a system of two low-molecular components, as well as for systems with a third component. The glass transition temperatures of the mixtures frequently exceeded those of their individual components. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
This paper discusses monomer reactivity ratios in various radiation- and redox-initiated graft copolymerizations. The polymers studied were polyethylene, cellulose acetate, poly(vinyl chloride), polytetrafluoroethylene, poly(vinyl alcohol), and poly(methyl methacrylate); the comonomer mixtures were styrene–acrylonitrile, methyl acrylate–styrene, acrylonitrile–methyl acrylate, and vinyl acetate–acrylonitrile. The polymer–comonomer mixture systems were so chosen as to permit study of both homogeneous and heterogeneous systems. The homogeneous systems included systems of low and high viscosity. The heterogeneous systems included both polymers swollen by the comonomer mixture and polymers not swollen by the comonomer mixture. None of the homogeneous grafting systems studied showed deviations from the normal copolymerization behavior under a variety of experimental conditions. Monomer reactivity ratios in graft copolymerization were the same as the values in nongraft copolymerization. The heterogeneous systems in which the polymer was swollen by the comonomer mixture yielded grafted copolymer compositions which were the same as those in nongraft copolymerization. The heterogeneous grafting system polytetrafluoroethylene/styrene–acrylonitrile showed deviations from normal copolymerization behavior at low degrees of grafting when the reaction was only on the polymer surface. The behavior became normal at higher degrees of grafting when the system approaches that in which the polymer is swollen by the comonomers. In all reaction systems, it was found that the use of radiation to initiate the reaction does not in any way affect the copolymerization behavior of the two monomers in a comonomer pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号