首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing demand for high-performance rechargeable energy storage systems has stimulated the exploration of advanced electrode materials. MXenes are a class of two-dimensional (2D) inorganic transition metal carbides/nitrides, which are promising candidates in electrodes. The layered structure facilitates ion insertion/extraction, which offers promising electrochemical characteristics for electrochemical energy storage. However, the low capacity accompanied by sluggish electrochemical kinetics of electrodes as well as interlayer restacking and collapse significantly impede their practical applications. Recently, interlayer space engineering of MXenes by different chemical strategies have been widely investigated in designing functional materials for various applications. In this review, an overview of the most recent progress of 2D MXenes engineering by intercalation, surface modification as well as heterostructures design is provided. Moreover, some critical challenges in future research on MXene-based electrodes have been also proposed.  相似文献   

2.
Since the initial MXenes were discovered in 2011, several MXene compositions constructed using combinations of various transition metals have been developed. MXenes are ideal candidates for different applications in energy conversion and storage, because of their unique and interesting characteristics, which included good electrical conductivity, hydrophilicity, and simplicity of large-scale synthesis. Herein, we study the current developments in two-dimensional (2D) MXene nanosheets for energy storage and conversion technologies. First, we discuss the introduction to energy storage and conversion devices. Later, we emphasized on 2D MXenes and some specific properties of MXenes. Subsequently, research advances in MXene-based electrode materials for energy storage such as supercapacitors and rechargeable batteries is summarized. We provide the relevant energy storage processes, common challenges, and potential approaches to an acceptable solution for 2D MXene-based energy storage. In addition, recent advances for MXenes used in energy conversion devices like solar cells, fuel cells and catalysis is also summarized. Finally, the future prospective of growing MXene-based energy conversion and storage are highlighted.  相似文献   

3.
Trioxatriangulenium ion (TOTA(+)) is a flat, somewhat hydrophobic compound that has a low-energy unoccupied molecular orbital. It binds to duplex DNA by intercalation with a preference for G-C base pairs. Irradiation of intercalated TOTA(+) causes charge (radical cation) injection that results in strand cleavage (after piperidine treatment) primarily at GG steps. The X-ray crystal structure of TOTA(+) intercalated in the hexameric duplex d[CGATCG](2) described here reveals that intercalation of TOTA(+) results in an unusually large extension of the helical rise of the DNA and that the orientation of TOTA(+) is sensitive to hydrogen-bonding interactions with backbone atoms of the DNA. Electronic structure calculations reveal no meaningful charge transfer from DNA to TOTA(+) because the lowest unoccupied molecular orbital of TOTA(+), (LUMO)(T), falls in the gap between the highest occupied molecular orbital, (HOMO)(D), and the (LUMO)(D) of the DNA bases. These calculations reveal the importance of backbone, water, and counterion interactions, which shift the energy levels of the bases and the intercalated TOTA(+) orbitals significantly. The calculations also show that the inserted TOTA(+) strongly polarizes the intercalation cavity where a sheet of excess electron density surrounds the TOTA(+).  相似文献   

4.
Novel nanomaterials and advanced nanotechnology continuously push forward the rapid development of sustainable energy conversion and storage equipment. An emerging family of two-dimensional transition-metal carbides, nitrides and carbonitrides, also known as MXenes, have attracted increasing attention and in depth investigation. Benefitting from their unique intrinsic properties, MXenes have attracted significant attention and they have been considered as promising candidate materials for the development of environmentally friendly energy resources. A large number of studies show that MXenes have great potential in energy conversion and storage fields. Despite of their exceptional properties, MXenes also have some inherent characteristics, such as low capacities and unstable retention performances, which severely hinder their prospect applications in energy conversion and storage fields. In this Minireview, the latest progress on MXenes and their hybrid composites with small molecules, polymers, carbon or metal ions, and their applications in energy conversion and storage fields is highlighted, including their use in different types of batteries, supercapacitors, hydrogen/oxygen evolution reactions, electromagnetic interference absorption/shielding and solar steam generation. In addition, the critical challenges and further development prospects of MXene-based materials are also introduced.  相似文献   

5.
通过XRD和IR表征对镁铝层状复合氧氧化物(LDH)与水杨酸、乙酰氨基酚、乙酰水杨酸,以及谷氨酸、色氨酸、牛黄酸反应产物的比较分析,研究了不同药物对有关组装方式的适宜性.结果表明水杨酸类药物均可通过离子交换组装到LDH层间,晶胞参数c由2.3893 nm依次增大为2.4024、2.4110和2.4111nm,通道高度h由0.3194 nm增大为0.3238、0.3267和0.3268 nm;通过离子交换能将谷氨酸组装到LDH层间,产物的IR吸收、热分解行为及TEM形貌与前体有明显区别,晶胞参数c由2.3765nm增大为2.3851nm,h由0.3152nm增大为0.3180nm;共沉淀法适宜制备LDH-牛黄酸插层复合物,但简单的离子交换不能使色氨酸与LDH有效复合.  相似文献   

6.
Multi-cation intercalation in aqueous and neutral media is promising for the development of high-safety energy storage devices. However, developing a new host matrix for reversible cation intercalation as well as understanding the relationship between cation intercalation and the interlayer structure is still a challenge. In this work, we demonstrate layered cobalt hydroxides as a promising host for cation interaction, which exhibit high metal ion (Li+, Na+, K+, Mg2+ and Ca2+) storage capacities after phase transformation. Moreover, it is found that α-Co(OH)2 with an intercalated structure is more conducive to phase transition after electrochemical activation than β-Co(OH)2. As a result, the activated α-Co(OH)2 delivers four times higher capacity in multi-cation storage than activated β-Co(OH)2. Meanwhile, the α-Co(OH)2 after activation also shows an ultralong cycle life with capacity retention of 93.9% after 5000 cycles, which is also much superior to that of β-Co(OH)2 (∼74.8%). Thus, this work displays the relationship between cation intercalation and the interlayer structure of layered materials, which is important for designing multi-ion storage materials in aqueous media.

Phase engineering of cobalt hydroxide toward cations intercalation is explored. Among them, α-Co(OH)2 is proven to be more conductive to phase transition than β-Co(OH)2 during electrochemical activation, which shows superior multi-cations storage performance.  相似文献   

7.
采用IR、XRD、SEM、EDS、DT-TG和滴定实验等技术手段研究主体三聚磷酸二氢铝(ATP)与客体甲胺、乙胺、正丙胺和正丁胺等有机胺的插层反应特性。 实验结果表明,ATP与甲胺、乙胺、正丙胺、正丁胺发生了化学反应,有机胺中的N与ATP层间-OH上的H形成配位键。 这些有机胺通过插层反应改变了ATP的酸性、层间距和热分解温度,但没有改变颗粒的层状形貌。 层间距从0.795 nm增大至1.71 nm,层间距d与有机胺的碳原子数Cn呈线性关系:d=0.229Cn+0.811,R2=0.9986。 有机胺分子链越长则越具有剥离倾向。  相似文献   

8.
The intercalation chemistry of layered αI modification of vanadyl phosphate and vanadyl phosphate dihydrate is reviewed. The focus is on neutral molecular guests and on metal cations used as guest species. The basic condition for the ability of the neutral molecules to be intercalated into vanadyl phosphate is a presence of an electron donor atom in them. The most commonly used guest compounds are those containing oxygen, nitrogen or sulfur as electron donor atoms. Regarding the molecules containing oxygen, various compounds were used as molecular guests starting from water to alcohols, ethers, aldehydes, ketones, carboxylic acids, lactones, and esters. An arrangement of the guest molecules in the interlayer space is discussed in connection with the data obtained by powder X-ray diffraction, thermogravimetry, IR and Raman spectroscopies, and solid-state NMR. In some cases, the local structure was suggested on the basis of quantum chemical calculations. Besides of those O-donor guests, also N-donor guests such as amines, nitriles and nitrogenous heterocycles and S-donor guests such as tetrathiafulvalene were intercalated into VOPO4. Also intercalates of complexes like ferrocene were prepared. Intercalation of cations is accompanied by a reduction of vanadium(V) to vanadium(IV). In this kind of intercalation reactions, an iodide of the intercalated cation is often used as it serves both as a mild reduction agent and as a source of the intercalated species. Intercalates of alkali metals, hydronium and ammonium were prepared and characterized. In the case of lithium and sodium intercalates, a staging phenomenon was observed. These redox intercalated vanadyl phosphates undergo ion exchange reactions which are discussed from the point of the nature of cations involved in the exchange. Vanadyl phosphates in which a part of vanadium atom is replaced by other metals are also briefly reviewed.  相似文献   

9.
The rheological behavior of intercalated polystyrene/layered silicate nanocomposites was investigated. Both storage and loss moduli increased with silicate loading at all frequencies and showed non‐terminal behavior at low frequencies which is a typical behavior of non‐homogeneous systems with ordered microstructures. The rheological behavior in intercalated polystyrene/layered silicate nanocomposite depends not only on the intercalation of polymers, but also on the alignment of silicate layers. Furthermore, the real time intercalation dynamics of polystyrene into the layered silicate, monitored by rheological measurements, were also consistent with our simple quantitative analysis.  相似文献   

10.
"Graphite intercalation compounds with CuCl2-FeCl3-H2SO4 were synthesized via a hydrothermal treatment at 150 oC and exfoliation method. The structure and composition of these graphite intercalation compounds were analyzed by means of X-ray diffraction, energy dispersive X-ray and high-resolution transmission electron microscopy. The results demonstrate that the CuCl2-FeCl3-H2SO4 molecules were successfully intercalated into the interlayer of the graphite sheets. The temperature dependence of magnetization was measured from 5 K to 300 K. Two antiferromagnetic transitions of the graphite intercalation compounds were observed at low temperatures. The critical transition temperatures are estimated to be about 50 and 102 K. The related magnetic properties are discussed briefly."  相似文献   

11.
Two vermiculite hybrids containing aliphatic amines intercalated were synthesized. The amount of guest molecules intercalated resulted in 0.60 and 0.52 mmol g−1 for pyperidine and pyperazine, respectively, which reflect the effectiveness of such kind of reactions. The processes were confirmed by elemental analysis and infrared spectroscopy. X-ray diffraction patterns suggested that the original crystallinity of matrix was maintained, however, the intercalation process is associated with the conformation of the guest molecule and the presence of the compensate cation inside the interlayer cavity. The intercalated inorganic hosts adsorb divalent lead, nickel, copper and cobalt cations, more effectively at basic pH value, from aqueous solution, which content of adsorption is higher than the precursor native vermiculite.  相似文献   

12.
Na(+)-montmorillonite type Wyoming, cloisite Na(+) from Southern Clay Products, Inc., was intercalated (i) with octadecylammonium cations and subsequently intercalated with octadecylamine molecules, (ii) with dodecylamine molecules, and (iii) with octylamine molecules to determine the applicability of these intercalates for nanocomposite materials on the base of polymer/clay. The structures were determined on the basis of a combination of results from X-ray diffraction and molecular simulations. The calculated values of basal spacings are in good agreement with experimental basal spacings when experimental samples were prepared. The interlayer space of intercalated montmorillonite shows a monolayer or bilayer arrangement of alkyl chains in dependence on the concentration of the intercalation solution. The values of the total sublimation energy, interaction energy, and exfoliation energy were calculated for all investigated samples. Low values of exfoliation energies lead to better exfoliation of intercalated silicate layers and this material appears suitable for use as a precursor for polymer/clay nanocomposites. The values of exfoliation energy for the investigated samples show that montmorillonite intercalated with dodecylamine or octadecylamine molecules is suitable for exfoliation of silicate layers.  相似文献   

13.
李钟  李强 《化学学报》2003,61(3):422-426
从构筑静电自组装聚电解质/有机染料插层蒙脱土光致变色纳米复合膜所必需 的基本纳米构件--有机染料插层蒙脱土光致变色纳米复合物的设计出发,制备了具有光致 变色功能的蒙脱土/阳离子偶氮染料(GTL)均插层纳米复合物现,插人蒙脱土层 间的GTL热稳定性大幅度提高.由于GTL在纳米受限空间的超分子有序结构共轭,使 偶氮基发生了高达91 nm的显著红移.使用该插层纳米复合物构件与阳离子聚电解 质(PDAC)通过静电自组装得到了生长均匀、排列规整有序的光致变色聚电解质/ 阳离子偶氮染料插层蒙脱土纳米复合膜.  相似文献   

14.
Layered metal disulfides-MS(2) (M = Mo, W) in the form of fullerene-like nanoparticles and in the form of platelets (crystallites of the 2H polytype) have been intercalated by exposure to alkali metal (potassium and sodium) vapor using a two-zone transport method. The composition of the intercalated systems was established using X-ray energy dispersive spectrometer and X-ray photoelectron spectroscopy (XPS). The alkali metal concentration in the host lattice was found to depend on the kind of sample and the experimental conditions. Furthermore, an inhomogeneity of the intercalated samples was observed. The product consisted of both nonintercalated and intercalated phases. X-ray diffraction analysis and transmission electron microscopy of the samples, which were not exposed to the ambient atmosphere, showed that they suffered little change in their lattice parameters. On the other hand, after exposure to ambient atmosphere, substantial increase in the interplanar spacing (3-5 A) was observed for the intercalated phases. Insertion of one to two water molecules per intercalated metal atom was suggested as a possible explanation for this large expansion along the c-axis. Deintercalation of the hydrated alkali atoms and restacking of the MS(2) layers was observed in all the samples after prolonged exposure to the atmosphere. Electric field induced deintercalation of the alkali metal atoms from the host lattice was also observed by means of the XPS technique. Magnetic moment measurements for all the samples indicate a diamagnetic to paramagnetic transition after intercalation. Measurements of the transport properties reveal a semiconductor to metal transition for the heavily K intercalated 2H-MoS(2). Other samples show several orders of magnitude decrease in resistivity and two- to five-fold decrease in activation energies upon intercalation. These modifications are believed to occur via charge transfer from the alkali metal to the conduction band of the host lattice. Recovery of the pristine compound properties (diamagnetism and semiconductivity) was observed as a result of deintercalation.  相似文献   

15.
采用基于密度泛函理论(DFT)的色散修正方法,研究了Na吸附和嵌入在双空位缺陷(DV)双层石墨烯(BLG)体系中的形成能、电荷转移、电极电势和扩散行为。形成能计算表明,无论单个Na原子在BLG表面吸附还是层间嵌入,均在DV空位中心处更稳定。电荷密度分布和Bader电荷计算表明Na与BLG的结合方式表现出离子性。Na嵌入DV缺陷BLG层间,缺陷浓度增加使BLG由AB堆垛向AA堆垛转变过程推迟;使Na在DV缺陷BLG的表面和层间能够稳定储钠的容量之和增至262.75 mAh?g~(-1),对应浓度Na与C摩尔比为2:17,储钠浓度继续增加,Na在BLG表面吸附容易产生枝晶或团簇。当层间嵌入Na原子时,表面Na原子向DV缺陷中心方向扩散能垒减小、表面Na原子沿相反方向的扩散能垒增加,DV缺陷的存在提高了BLG表面捕获Na的能力。  相似文献   

16.
Since their discovery in 2011, MXene compounds, and in particular the Ti3C2-based phases, have gained increasing interest from researchers leading to over 2000 scientific works in 2020. The peculiar morphological, charge transport, and surface properties make the MXenes ideal materials for energy storage applications such as active material in alkaline ion batteries and supercapacitors, as conductive or buffer agent in composite electrodes for high energy applications, and as electrocatalytic materials for oxygen evolution or redox flow batteries. Among this almost endless literature, this work focuses on 5 recent articles (2019/2020) that summarize the potential of MXenes in different energy storage applications, also resuming the most promising preparatory routes regarding industrial scalability.  相似文献   

17.
Graphite intercalation compounds are often prepared by flake graphite, oxidants, inorganic acids, organic acids and intercalated ions which are usually hydrogen protons between the graphene planes. They are also known as the acid-treated graphite intercalation compounds. In this work, alkaline graphite intercalation compounds were prepared by flake graphite, K2Cr2O7, concentrated H2SO4 and NaOH, and the morphology and structure were characterized by Electron microscopy and X-ray techniques. The results display that the combination of neutralisation heat and oxidation capability produced by K2Cr2O7 can break the bonds to produce the spaces between the graphene planes and hydroxyl ions also intercalate into the graphene planes to form alkaline graphite intercalation compounds in alkali solution. The morphology and structure of alkaline graphite intercalation compounds are analogous to the ones of the acid-treated graphite intercalation compounds, but the intercalated ions and the expansion volume are different. The results show that the method is an innovation.  相似文献   

18.
Rectorite is an interstratified clay mineral made at 1:1 ratio of an orderly arrangement of a nonswelling component illite and a swelling component smectite. Due to the presence of two distinct types of components, it is of great interest to study the adsorption of long chain alkylammonium in rectorite. In this study, we conducted batch experiments and used X-ray diffraction (XRD) and Fourier Transform infrared (FTIR) spectroscopy to characterize the interlayer configuration of intercalated long chain hexadecyltrimethylammonium (HDTMA) in rectorite. The FTIR results showed that a monomer-like intercalation with extensive gauche conformers was formed at surfactant loading less than the cation exchange capacity (CEC) of the mineral. At a higher surfactant loading the CH2--symmetric and anti-symmetric vibrations shifted to lower frequencies, suggesting a more ordered all-trans surfactant interlayer configuration. The thermogravimetric and derivative of thermogravimetric analayses showed a high pyrolysis temperature for the monomer-like gauche conformers and lower pyrolysis temperature for the all-trans configuration of the intercalated HDTMA. The XRD analysis confirmed the monomer-like conformation with a d-spacing of 25.2 angstroms at the low surfactant intercalation and a vertical all-trans configuration with a d-spacing of 49.5 angstroms at an HDTMA intercalation of 3.20 CEC. In addition to conformation analyses of intercalated surfactant in the interlayer using FTIR, the absorbance measured by peak height at 1470, 2850, and 2917 cm(-1) increased linearly with surfactant loading, providing a faster, yet efficient method to quantify the amount of surfactant adsorbed.  相似文献   

19.
We report the electrochemical intercalation of three cations derived from amines with different chain length, into the layered compound 2H-NbS2. The intercalation processes were accompanied by ex situ and in situ X-ray diffraction. For in situ analysis, an electrochemical cell was designed for the purpose. The X-ray diffraction experiments show that the intercalation is a complex process, which involves stacking faults and the formation of stages. When the cations are removed, no changes in the final interplanar basal distances occur, suggesting that there are ideal concentrations of intercalated ions that stabilize the phases. Also, based on the X-ray diffraction results we propose a steric arrangement for the hydrated cations into the van der Waals gaps.  相似文献   

20.
过渡金属碳化物、 氮化物或碳氮化物(MXenes)具有丰富的元素组成和结构可调性, 显示出丰富的物理化学性质和巨大的应用潜力. 本文以此类材料的基本光学特性为基础, 从光子发射、 透明导电及储能、 非线性光学、 表面等离激元及拉曼增强、 光热转化、 光催化及光响应等光学相关领域展开分析和综述. 并对此二维材料相关应用的未来发展及机遇作了简单评述, 以期为进一步的研究提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号