首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ordered mesoporous tungsten oxide@graphene aerogel (mWO3@GA) nanocomposites were synthesized via an interface-induced co-assembly process, which show a high selectivity and great response to acetone at low temperature.  相似文献   

2.
Nanocomposites constructed by combining mesoporous metal oxides and graphene have received tremendous attention in wide fields of catalysis,energy storage and conversion,gas sensing and so on.Herein,we present a facile interface-induced co-assembly process to synthesize the mesoporous W03@graphene aerogel nanocomposites(denoted as mW03@GA),in which graphene aerogel(GA) was used as a macroporous substrate,mesoporous W03 was uniformly coated on both sides of graphene sheets through a solvent evaporation-induced self-assembly(EISA) strategy using diblock copolymer poly(ethylene oxide)-b-polystyrene(PEO-b-PS) as a template.The resultant mW03@GA nanocomposites possess well-interconnected macroporous graphene networks covered by mesoporous W03 layer with a uniform pore size of 19 nm,high surface area of 167 m~2/g and large pore volume of 0.26 cm~3/g.The gas sensing performance of mW03@GA nanocomposites toward acetone and other gases was studied,showing a high selectivity and great response to acetone at low temperature of 150℃,which could be developed as a promising candidate as novel sensors for VOCs detection.  相似文献   

3.
The rapid development of internet and internet of things brings new opportunities for the expansion of intelligent sensors,and acetone as a major disease detection indicator(i.e.,diabetes) making it become extremely important clinical indicator.Herein,uniform mesoporous ZnO spheres were successfully synthesized via novel formaldehyde-assisted metal-ligand crosslinking strategy.In order to adjust the pore structure of mesoporous ZnO,various mesoporous ZnO spheres were synthesized by changing weight percentage of Zn(NO_3)_2·6 H_2 O to tannic acid(TA).Moreover,highly active heterojunction mesoporous ZnO/Co_3 O_4 has been fabricated based on as-prepared ultra-small Co_3 O_4 nanocrystals(ca.3 nm) and mesoporous ZnO spheres by flexible impregnation technique.Profit from nano-size effect and synergistic effect of p-n heterojunction,mesoporous ZnO/Co_3 O_4 exhibited excellent acetone sensing performance with high selectivity,superior sensitivity and responsiveness.Typically,5 wt% Co_3 O_4 embedded mesoporous ZnO sphere showed prominent acetone response(ca.46 for 50 ppm),which was about 11.5 times higher than that in pure ZnO sensing device,and it was also endowed high cyclic stability.The nanocrystals embedded hybrid material is expected to be used as promising efficient material in the field of catalysis and gas sensing.  相似文献   

4.
《中国化学快报》2020,31(6):1680-1685
H_2S can cause multiple diseases and poses a great threat to human health.However,the precise detection of extremely toxic H_2S at room temperature is still a great challenge.Here,a facile solvent evaporation induced aggregating assembly(EIAA) method has been applied for the production of ordered mesoporous carbon(OMCs) in an acidic THF/H_2 O solution with high-molecular-weight poly(ethylene oxide)-b-polystyrene(PEO-b-PS) copolymers as the structure-directing agent,formaldehyde and resorcinol as carbon precursors.Along with the continuous evaporation of THF from the mixed solution,cylindrical micelles are formed in the solution and further assemble into highly ordered mesostructure.The obtained OMCs possesses a two-dimensional(2 D) hexagonal mesostructure with uniform and large pore diameter(~19.2 nm),high surface area(599 m~2/g),and large pore volume(0.92 cm~3/g).When being used as the resonant cantilever gas sensor for room-temperature H_2S detection,the OMCs has delivered not only a superior gas sensing performance with ultrafast re s ponse(14 s) and recovery(21 s) even at low concentration(2 ppm) but also an excellent selectivity toward H_2S among various common interfering gases.Moreover,the limit of detection is better than 0.2 ppm,indicating its potential application in environmental monitoring and health protection.  相似文献   

5.
Two-dimensional mesoporous materials combing ultrathin nanosheet morphology with well-defined mesoporous structures,are now emerging and becoming increasingly important for their promising applications in energy storage,electronic devices,electrocatalysts and so on.Here,we synthesized a kind of polypyrrole-based two-dimensional mesoporous materials with uniform pore size,ultrathin thickness and high surface area.Serving for electrochemical NH3 sensor,they exhibited a fast response and high sensitivity.Therefore,our study would promote much interest in design of new materials for gas sensor applications.  相似文献   

6.
Novel mesoporous silica-immobilized rhodamine (MSIR) and silica particle-immobilized rhodamine (SPIR) anchored by a tren (N(CH2CH2NH2)3) were synthesized. The binding and adsorption abilities of both MSIR and SPIR for metal cations were investigated with fluorophotometry and ion chromatography, respectively. Both MSIR and SPIR show selectivity for Hg2+ ion over other metal cations because the Hg2+ ion selectively induces a ring opening of the rhodamine fluorophores. The sensitivity of the MSIR for Hg2+ ion is greater than that of the SPIR and the MSIR adsorbs 70% of Hg2+ ion while the SPIR does only 40%. The MSIR can be also easily recovered by treatment of a solution of TBA+OH. For the application of Hg2+ detection in the environmental field, the MSIR-coated glass plate is also developed and exhibits an excellent function in visual and fluorescence changes with Hg2+ ion.  相似文献   

7.
Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and thermo-gravimetric analysis(TGA).The Polythiophene/ WO3 hybrids have higher thermal stability than pure polythiophene,which is beneficial to potential application as chemical sensors.Gas sensing measurements demonstrate that the gas sensor based on the Polythiophene/WO3 hybrids has high response and good selectivity for de- tecting NO2 of ppm level at low temperature.Both the operating temperature and PTP contents have an influence on the response of PTP/WO3 hybrids to NO2.The 10 wt%PTP/WO3 hybrid showed the highest response at low operating temperature of 70-C.It is expected that the PTP/WO3 hybrids can be potentially used as gas sensor material for detecting the low concentration of NO2 at low temperature.  相似文献   

8.
On the basis of a sol–gel process, a facile, low cost, and one-step approach for preparing ordered magnetic mesoporous γ-Fe2O3/SiO2 nanocomposites by an evaporation-induced self-assembly (EISA) approach is presented. Various mesostructured silica materials (P6mm or Im3m) incorporated with different amounts of iron oxide (nSi/nFe=9/1, 8/2, 7/3, respectively) were synthesized and characterized by XRD, TEM, N2-sorption analyses, and superconducting quantum interference device (SQUID) magnetometer. The HCl-leaching experiments together with TEM micrographs and nitrogen sorption analysis suggested that most of the γ-Fe2O3 domains of several nanometers were embedded in the silica walls, rather than dispersed in the mesopores, which could cause the significant pore clogging reported in some studies. The release behaviors of lysozyme from these magnetic porous nanocomposites were investigated for the possible application of drug targeting and control release. The influence of iron precursors was also studied and a possible mechanism was proposed. The hydrolysis of Fe3+ ions under weakly acidic conditions and the induced formation of SiOFe bonds may account for the synthesis of this kind of nanocomposite. These multifunctional nanostructured materials would have a wide range of applications in toxin removal, catalysis, waste remediation, and biological separation as well as novel drug-carrier technologies.  相似文献   

9.
The gas selectivities of highly ordered mesoporous silicates and commercially-obtained porous silicates with respect to benzene, toluene and xylene were studied. After studying the porosities, pore uniformities, and surface silanol structures of the silicates and their relationships to gas selectivity in detail, we found that we could achieve high benzene selectivity by controlling the micropore size (less than 1 nm). Concluding that mesoporous silicate has a suitable micropore size and structure for benzene selectivity, we also observed that mesoporous silicate SBA-16 exhibited a high (>6) benzene selectivity from toluene and xylene even in a pseudo-atmospheric environment. A benzene detection limit of about 100 ppb was achieved by introducing SBA-16 into a microfluidic device originally developed for the separate detection of benzene, toluene, and xylene gases.  相似文献   

10.
Y(2)O(3) dumbbells, microspheres, and nanosheets were synthesized by a facile hydrothermal procedure followed by calcination. Electron microscopy, X-ray diffraction, and N(2) adsorption measurements were used to characterize the yttrium oxide microstructures. On the basis of a time-dependent study of nanostructure evolution and the effect of other processing parameters, a kinetic "homogeneous nucleation-self assembly-anisotropic growth" mechanism is proposed to explain the growth of these microstructures under hydrothermal conditions. The sensitivity of as-prepared Y(2)O(3) structures to a series of gaseous chemicals was examined by using a homemade cataluminescence sensing system. The designed cataluminescence sensor based on the yttrium oxide dumbbells shows good sensing performance for 16 common volatile organic compounds.  相似文献   

11.
TiO2-based nanosheets (TNSs) co-modified by Fe2O3 and Ho2O3 were synthesized by one-pot hydrothermal method using Fe(NO3)3 and Ho(NO3)3 as precursors compositing with TiO2. The Fe2O3/Ho2O3-TNSs heterojunctions possessed a thickness of approximately 3–4 nm, large specific surface area of 210–310 cm2/g, with Fe2O3 and Ho2O3 nanoparticles highly dispersed over the surface of the nanosheets. The crystallization of the samples gradually increased with the amount of Fe2O3 nanoparticles, which was confirmed by the XRD, BET and Raman spectra, indicating that Ho2O3 and Fe2O3 influenced the crystallinity and structure evolution of the TNSs, besides, led to an improved the visible-light absorption. Surface photocurrent and fluorescence spectral studies revealed that the photo-generated charge carrier separation efficiency could be efficiently improved by an appropriate amount of modification. The Fe2O3/Ho2O3-TNSs exhibited synergistic effect on photocatalytic degradation of RhB as well as MO under visible light. The highest efficiency was obtained by 0.05%-Fe2O3/Ho2O3-TNSs (Fe:Ho:Ti = 0.05:1:100), which was 8.86 and 6.72 times than that of individual 1.0%-Ho2O3-TNSs (Ho:Ti = 1:100) and 0.05%-Fe2O3-TNSs (Fe:Ti = 0.05:100), respectively. The possible mechanism for enhanced visible-light-induced photocatalytic activity was proposed. Ho2O3 introduced in the photocatalysts may act as the hole capture while Fe2O3 may share the same Fermi levels with TNSs and serve as the electron capture center in the n-n-p system, which reduced the recombination rate of photo-induced electron-hole pairs.  相似文献   

12.
Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 °C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N2 adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The 29Si MAS NMR spectra confirmed that PMHS and TEOS have jointly condensed and CH3 groups have been introduced into the materials. The 27Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH3 temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH3 groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts.  相似文献   

13.
Molecular nitrogen is relatively inert and the activation of its triple bond is full of challenges and of significance. Hence, searching for an efficiently heterogeneous catalyst with high stability and dispersion is one of the important targets of chemical technology. Here, we report a Ba-K/Ru-MC catalyst with Ru particle size of 1.5–2.5 nm semi-embedded in a mesoporous C matrix and with dual promoters of Ba and K that exhibits a higher activity than the supported Ba-Ru-K/MC catalyst, although both have similar metal particle sizes for ammonia synthesis. Further, the Ba-K/Ru-MC catalyst is more active than commercial fused Fe catalysts and supported Ru catalysts. Characterization techniques such as high-resolution transmission electron microscopy, N2 physisorption, CO chemisorption, and temperature-programmed reduction suggest that the Ru nanoparticles have strong interactions with the C matrix in Ba-K/Ru-MC, which may facilitate electron transport better than supported nanoparticles.  相似文献   

14.
半导体复合氧化物气敏材料研究进展   总被引:5,自引:1,他引:4  
综述了近几年半导体复合氧化物的发展,包括分类、气敏机理、制备方法等,对其发展趋势提出了一些看法。引用文献33篇。  相似文献   

15.
A novel non-suffactant method was described to synthesize mesoporous silica using dye basic fuchsin as template.Chemical reactions were introduced into the formation of mesopores rather than the weak electrostatic or hydrogen-bonding interactions in the traditional surfactant routes.The reactant composition was found to be crucial to the pore structure of objective product.The formation mechanism of mesopore was also proved.  相似文献   

16.
In this paper,the TiO2 nanotubes were synthesized by hydrothermal method using a 10 mol/L NaOH aqueous solution at 150℃. The structure of prepared materials was characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM). scanning electron microscope(SEM) and Brunauer-Emmett-Teller(BET).The prepared TiO2 nanotubes were used to prepare thick film gas sensors and the gas sensing properties to various gases were tested.Results show the prepared TiO2 nanotube gas sensors responses to ethanol under dry condition at 450℃.This could be attributed to the fact that it had high porous morphology and a higher pore volume,which can promote the diffusion of ethanol deep inside the films and improve the sensor response. Moreover,the gas sensor made with nanotubes exhibit high selective response towards ethanol gas compared with H2,CO,acetone.  相似文献   

17.
A new sol-gel synthesis procedure of stable calcium copper titanate (CaCu3Ti4O12—CCTO) precursor sols for the fabrication of porous films was developed. The composition of the sol was selected in order to avoid the precipitation of undesired phases; ethanol was used as solvent, acetic acid as modifier and poly(ethyleneglycol) as a linker agent. Films deposited by spin-coating onto oxidized silicon substrates were annealed at 700 °C. The main phase present in the samples, as detected by X-ray diffraction and Raman spectroscopy, was CaCu3Ti4O12. Scanning electron microscopy analysis showed that mesoporous structures, with thicknesses between 200 and 400 nm, were developed as a result of the processing conditions. The films were tested regarding their sensibility towards oxygen and nitrogen at atmospheric pressure using working temperatures from 200 to 290 °C. The samples exhibited n-type conductivity, high sensitivity and short response times. These characteristics indicate that CCTO mesoporous structures obtained by sol-gel are suitable for application in gas sensing.  相似文献   

18.
Nanocrystalline anatase TiO2 powder photocatalysts were synthesized by a vapor-thermal method using tetrabutyl titanate as precursor at a temperature range from 120 to 200 °C. The as-synthesized products were characterized by X-ray diffraction, N2 adsorption-desorption measurement, transmission electron microscopy, high resolution transmission electron microscopy, Fourier transform infrared spectra, Raman spectra, and their photocatalytic activity was evaluated by photocatalytic oxidation decomposition of acetone in air. The results showed that reaction temperature greatly affected the microstructures and photocatalytic activity of the samples. With increasing reaction temperature and time, the average crystalline size of TiO2 particles increased and their crystallization enhanced, while the specific surface area of the products decreased. The TiO2 powders obtained at a temperature range from 150 to 200 °C for 10 h showed good photocatalytic activity and were greatly higher than that of Degussa P-25.  相似文献   

19.
以醋酸锰为前驱物通过浸渍法制备了MnOx/TiO2催化剂,用WO3对载体进行改性制得一系列MnOx-WO3/ TiO2催化剂,采用X射线衍射(XRD)、比表面积测定(BET)、拉曼光谱(LRS)、原位红外(FT-IR)光谱等表征技术进行相关的微观表征分析,同时在模拟氨气选择性催化还原NOx(NH3-SCR)的反应条件下对催化剂的脱硝反应活性进行了考察。研究表明,添加5%的WO3拓展了载体的比表面积,提高了催化剂的抗热性,增加了催化剂表面的Brnsted酸位,拓宽其选择性催化还原脱硝活性温度窗口,对MnOx/TiO2催化剂有很好的改性作用;先钨后锰的负载顺序优于先锰后钨;随着温度的升高,化学催化反应速率提高,催化剂表面NH3吸附峰呈减弱或消失趋势,故催化剂脱硝活性温度曲线呈中间高、两头低。  相似文献   

20.
Mesoporous silicas and Fe-SiO2 with worm-like structures have been synthesized using a room temperature ionic liquid, 1-hexadecane-3-methylimidazolium bromide, as a template at a high aging temperature (150-190 °C) with the assistance of NaF. The hydrothermal stability of mesoporous silica was effectively improved by increasing the aging temperature and adding NaF to the synthesis gel. High hydrothermally stable mesoporous silica was obtained after being aged at 190 °C in the presence of NaF, which endured the hydrothermal treatment in boiling water at least for 10 d or steam treatment at 600 °C for 6 h. The ultra hydrothermal stability could be attributed to its high degree of polymerization of silicate. Furthermore, highly hydrothermal stable mesoporous Fe-SiO2 has been synthesized, which still remained its mesostructure after being hydrothermally treated at 100 °C for 12 d or steam-treated at 600 °C for 6 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号