共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of Organosilicon Compounds. 89. Selective Photobromination of Si-methylated Carbosilanes A selective photobromination of the C atoms in the skeleton of Si-methylated carbosilanes is reported. (me3Si? CH2)2Sime2 reacts to me3Si? CBr2? Sime2? CH2? Sime3 in good yields (me = CH3); the second CH2 group is considerably slower brominated. Photobromination of (me2Si? CH2)3 consecutively yields a and b . Also from (me2Si? CH2)4 the derivative with one CBr2 group is accessible. Bromination of tertiary CH groups is highly preferred; this is shown by the selective formation of c . The C-bromination of SiBr-substituted carbosilanes is significantly more difficult; nevertheless (Brme2Si)2CH2 selectively forms (Brme2Si)2CBr2. Brme2Si? CH2? Sime2? CH2? Sime3 forms Brme2Si? CH2? Sime2? CBr2? Sime3, i. e., only the CH2 group non-adjacent to SiBr is attacked. The formation of CHBr groups could not be detected. Higher temperatures and longer reaction times increase the formation of polymers. 相似文献
2.
This paper contains:
- 1 The synthesis of the 1.3-disilacyclopentenes (a)(b)(2) and of the 1.3-disilacyclo-butane (c); formulas see above.
- 2 The synthesis of the 1.3-disilacyclopentane skeleton (d) and of the SiCl-functional derivatives (e) (f ) (g) (h) (i) as well as of SiH-containing derivatives, e.g. (j).
- 3 The chlorination of (i) with SO2,Cl2, yielding (k) and (l), and the formation of (m) from (k) with K-methypyrrolidine.
- 4 The synthesis of the spirane (n).
- 5 The synthesis of the ten-membered ring(o) and of the unsaturated derivatives (p)and (q). Besides the synthetic routes, spectroscopic data (ir, pmr, and mass spectra) of the cyclic compounds as well as of the intermediate products are given.
3.
Formation of organosilicon compounds. 84. Synthesis and thermal rearrangement of some substituted linear and cyclic silanes In part IR we report on the synthesis of substituted silanes, and in part II on their thermal rearrangement. I: me3i--Sime3(me = CH3) is formed by dropwise addition of THF to a suspension of Li powder in me3SiCl; yield ~ 80%. The mixture me3Si--Sime2Cl, me3SiCl, Li powder and THF reacts analogously to form me2Si(Sime3)2; yield 80%. By the same type of reaction the following compounds are obtained: compound 1 from Brme2Si? CH2? Sime2Br, 1 from Brme2Si? CH2? Sime2Br, 2 from Brme2Si? Sime2? CH2? Sime2Br 16 and 3 from Bret2Si? CH2? CH2? Siet2Br (et = C2H5). 2 decomposes during its isolation from THF. 16 is formed from phme2Si? Sime2? CH2? Sime2ph 17 (ph = C6H5) by reaction with HBr, 17 either from phme2SiLi and Clme2SiCH2Cl or from phme2Si? Sime2Br and LiCH2? Sime2ph. II: me2Si(Sime3)2 rearranges at 440 °C (56 h) with insertion of the CH2 group (Si? H formation) into the Si? Si bond and the formation of me3Si? Sime2? CH2? Sime2H, me2HSi? CH2? Sime2? CH2? SiHme2, and me3Si? CH2? Sime? CH2? Sime2H. 1 reacts analogously. Methylated halogenated disilanes like Brme2Si? Sime2Br react with separation of: Sime2 and its insertion into the Si-halogen bond to form trisilanes. Different from both are the phenylated derivatives, though phme2Si? Sime2ph still forms phme2Si? Sime2? Sime2ph. 3 reacts with separation of C2H4, formation of the Si? H group and insertion of C2H4 into the Si? Si bond. 相似文献
4.
Formation of Organosilicon Compounds. 83. Formation, Reactions, and Structure of Ylides Generated from Perchlorinated Carbosilanes The CCl-moiety in perchlorinated carbosilanes as (Cl3Si)2 a, Cl3Si? CH2? SiCl2? CCl2? SiCl3 b, (Cl3Si? CCl2)2SiCl2 c or (Cl2Si? CCl2)3 d, e.g., cleaves the Si? P bond of me3Si? Pme2 e (me = CH3); and by subsequent rearrangement ylides are formed. Such, treating e with a yields (Cl3Si)2CPme2Cl 1, which also results from the reaction of me2P? Pme2 with a. The ylides also can be obtained by means of treating the carbosilanes a, b, c or d with LiPme2. Thus, c with one mole of LiPme2 yields Cl3Si? CCl2? SiCl2? C(Pme2Cl)? SiCl3 or Cl3Si? C(Pme2Cl)? SiCl2? C(Pme2Cl)? SiCl3, resp., with two moles of LiPme2. The corresponding Si-methylated derivates do not form ylides; (me3Si)2CCl2, e.g., with e in benzene yields me3Si? CH(Pme2)? Sime3. One mole of Lime methylates 1 to yield (Cl3Si)2CPme3 11. With either LiPme2, me3Si? Pme2 or Me2P? Pme2 1 forms (Cl3Si)2CPme2-Pme2. Reacting 1 with CH3OH/(C2H5)2NH, (Cl3Si)[SiCl2(OCH3)]CPme2(OCH3) is formed. Ylides also result from the reactions of partially C-chlorinated 1,1,3,3,5,5-hexachloro-1,3,5-trisilacyclohexanes with me3Si? Pme2, (Cl2Si? CCl2)3 with three moles of me3Si? Pme2 or LiPme2, resp., yields (Cl2Si? CPme2Cl)3 16, the 1,1,3,3,5,5-Hexachlor-2,4,6-tris(chlordimethylphosphoranyliden)-1,3,5-trisilacyclohexan, which crystallizes with one mole of monoglyme. X-ray structure determinations revealed that 1, 11 and 16 are planar. As well the (P? C) as the (Si? C) bond lengths are remarkably shortened; in 1 (P? C) to 173.3 pm, (Si? C) to 173.3 pm, (Si? C) to 179.5 pm, in 16 (P? C) to 168.7 pm, (Si? C) to 180 pm. The (Si? C) and (P? C) bond orders amount to about 1.33, and are relatively equally distributed. Therefore, the charge of the formal carbanion is equally distributed, which shall be expressed by means of the following kind of writing for 1 and 16 see “Inhaltsübersicht”. 相似文献
5.
Formation of Organosilicon Compounds. LXIII. Synthesis and Thermal Rearrangement of 1,1,3,3,4,4-Hexamethyl-1,3,4-trisilacyclopentane 1,1,3,3,4,4-Hexamethyl-1,3,4-trisilacyclopentane undergoes rearrangement at 500°C to form 1,1,3,5,5-Pentamethyl-1,3,5-trisilacyclohexane. The synthesis of 1,3,4-Trisilacyclopentane is reported. 相似文献
6.
Formation of Organosilicon Compounds. 90. Synthesis of C-linked Carbosilanes n-buLi metallates 1 to give 2 , which with phme2SiCl (ph = C6H5, me = CH3) forms 3 . This compound yields 4 with Br2. Lithiation of 3 yields 5 which for sterical reasons cannot be substituted with phme2SiCl. The spiro compounds 10 and 11 are available by treating 2 with (Brme2Si)2CH2 or (Brme2SiCH2)2-Sime2, resp. By means of n-buLi the CBr group in 4 can be metallated. On warming to 20°C the lithiated compound eliminates LiBr via an highly reactive intermediate to form 12 , 12 shows an extraordinary stability of the Si? C fourmembered ring against HBr or Br2 相似文献
7.
Formation of Organosilicon Compounds. 77. Formation of Carbosilanes from Methylsilanes The products formed by pyrolysis of me3SiH, me2SiH2, and meSiH3 are reported. Sime4 and the mentioned methylsilanes were reacted in a plasma, and the products are compared to those of the pyrolysis. The pyrolysis of me3SiH and me2SiH2 essentially yields the same groups of carbosilanes which are accessible by thermal decomposition of Sime4, if the range is restricted to compounds with 4 Si atoms at most. Cylic carbosilanes are the main products of the pyrolysis of me3SiH, and amoung these, 1,3,5-trisilacyclohexanes and 1,3,5,7-tetrasilaadamantanes are preferrently formed. From me2SiH2 above all linear compounds as 1,3-disilapropanes are obtained. This is attributed to the chosen experimental procedure in which they not subject to further reaction. In the pyrolysis of meSiH3 a yellow solid is formed besides little amounts of meH2Si? SiH2me. Compared to the compounds formed by pyrolysis of Sime4, the carbosilasen obtained from me3SiH and me2SiH2 possess more SiH substituents. Also the decomposition of Sime4 in a plasma preferrently yields carbosilanes, mainly linear compounds with 2 or 3 Si atoms. 相似文献
8.
Formation of Organosilicon Compounds. LVIII. Synthesis of a Carbosilane with Propellane Structure 1 (· ? C resp. CH2; x ? Si(CH3)2 resp. Si) is formed by a coupling reaction of BrSi(CH2? Sime2? CH2? Sime2Br)3 2 with CCl4 and Li. The reaction of C6H5me2Si? CH2Li with Clme2Si? CH2Br leads to C6H5me2Si? CH2? Sime2? CH2Br. Metallation with lithium and succeeding reaction with Cl3SiC6H5 produces compound C6H5Si(CH2? Sime2? CH2? Sime2C6H5)3, which than forms 2 by cleavage with bromine. 相似文献
9.
Formation of Organosilicon Compounds. 92. Formation and Structure of Octamethylhexasila-hexascaphane By rearrangement and abstraction of CH4 at the presence of AlBr3 2 forms 3 , and 6 forms 7 , which is also obtained reacting 8 and 9 under the same condition. Lithination of 1, 1, 3, 5, 5, 7, 7, 9, 9-Nonamethyl-1, 3, 5, 7, 9-pentasiladecaline yields 12 , which is trapped with me3SiCl to form 6 . Convertation of 13 to 14 leads to 8 by reaction with ClSi(CH2—Sime3)3. Compound 7 is characterized by NMR and mass spectroscopy as well as X-ray structural analysis. 1, 3, 5, 7, 9, 9, 11, 11-Octamethyl-1, 3, 5, 7, 9, 11-hexasila-hexascaphane 7 crystallizes in the monoclinic space group P21/n (No. 14) with a = 3296.7 pm, b = 1536.2 pm, c = 891.9 pm, β 91.71° and Z = 8 formular units. Both crystallographic independent molecules have approximately the symmetry C2. The differences of corresponding bond lengths, bond angles and torsion angles are unimportant. But there is a distinct dependence of the Si? C bond length relative to the function of the bond in the molecule (Averages: Si? C) (endo) = 188.4 pm, Si? C (exo) = 187.6 (pm). 相似文献
10.
Formation of Organosilicon Compounds. 103. Formation and Structure of cis and trans 2,4-Dichloro-2,4-bis(trimethylsilyl)-1,1,3,3-tetramethyl-1,3-disilacyclobutane The reaction of Me3Si? CCl2? SiMe2Cl with LiBu in THF yields 1,1,3,3-Tetramethyl-2,4-bis(trimethylsilyl) 1,3-disilabicyclo[1.1.0]butane. The product of the first reaction stage is Me3Si? CCl(Li)-SiMe2Cl. The 1,3-Disilacyclobutane 2 and 3 were isolated, when Me3Si? CCl2? SiMe2Cl was treated with LiBu in Et2O. This way the proof is given that 2 and 3 are intermediates of the formation of product 1 . The further products are 4 and 5 (CCl in 2 and 3 substituted by CH) and Me3Si? CH2? C(SiMeCl)2SiMe3. 2 crystallizes orthorhombically in the space group Fdd 2 (no. 43) with a = 2149.1 pm, b = 2229.2 pm, c = 1763.6 pm and Z = 16 molecules per cell. The central ring of disilacyclobutane is slightly folded (17.9°). The configuration of the C-Atoms in this four membered ring gets closer to a sp2 configuration built up by three Si? C bonds. The Cl-atoms approximately have orthogonal positions to these CSi3 arrangements. The extension of the C? Cl bonds (184.6 pm) and the mutual approximations of the Cl-atoms in the cis-position indicate a high reactivity of the molecule. 相似文献
11.
Bildung siliciumorganischer Verbindungen. 86. Si-phenylierte und butylierte 1,3,5-Trisilacyclohexane
Formation of Organosilicon Compounds. 86. Si-phenyl and Si-butyl Substituted 1,3,5-Trisilacyclohexanes By treating (BrHSi? CH2)3 with phMgBr or t-buLi, resp., and subsequent separation of the isomers, the pure cis-cis substituted 1,3,5-trisilacyclohexanes I are accessible which yield II (Formula see Inhaltsübersicht) by reaction with Br2. (F2Si? CH2)3 8 can be transferred into (ph2Si? CH2)3 7 with phLi. With HCl/AlCl3 7 forms (Cl2Si? CH2)3, whereas even with an excess of Br2 it only yields (phBrSi? CH2)3. Cleavage of 7 with one equivalent of Br2 yields (H2C? Si)3ph5Br 14, which with LiAlH4 forms (H2C? Si)3ph5H 10. 10 is not so easy to obtain via (H2C? Si)3ph5F 9 from the reaction of 8 with 5 equivalents of phLi. All of the SiH and SiBr groups in I and II, resp., occupy axial positions as well as the Br atom in 14 the H atom at Si in 10 and the F atom in 9. 相似文献
12.
Formation of Organosilicon Compounds. LXII. Partial Brominated Carbosilanes The photobromination of 1 leads to compound 2 as well as to C-chlorinated derivatives if the time of reaction is prolonged. Compound 2 is also formed from (Br2Si–CH2)3; Gl. (1) see ?Inhaltsübersicht”?. In a corresponding reaction (Cl3Si–CH2)2SiCl2 gives successively Cl3Si–CHBr–SiCl2–CH2–SiCl3, Cl3Si–CBr2–SiCl2–CH2–SiCl3 and Cl3Si–CCl2–SiCl2–CH2–SiCl3. (Cl3Si)2CBr2 is accessible through the photobromination of (Cl3Si)2CH2. The reactivity of the CBr2-group is quite obvious in the reaction of Cl2Si–CBr2–SiCl2–CH2–SiCl3 with LiAlH4 yielding (H3Si–CH2)2SiCl2 as well as in the reaction of compound 2 with CH3MgCl yielding [(CH3)2Si–CH2]3. By treatment of the SiH groups with bromine the preparation of compounds with the general formulas CH3SiHnBr3?n; (H3?nSiBrn)2CH2; (H3?nSiBrn? CH2)2SiH2?nBrn; (H2?nBrnSi? CH2)3 and (H3?nSiBrn)2CCl2 is possible. Analysis of the nmr spectra shows that 1,3-Dibromo-1,3,5-trisilacyclohexane is formed to 67% in the trans and to 33% in the cis configuration; 1,3,5-Tribromo-1,3,5-trisilacyclohexane is formed to 80–90% in teh cis-trans configuration. The results of 1H and 29Si NMR investigations are reported. 相似文献
13.
1. Photochlorination in CCl4 of the Si-chlorinated carbosilanes (Cl3Si? CH2)2SiCl2 and (Cl2Si? CH2)3 leads to totally chlorinated compounds, e. g. (Cl3Si? CCl2)2SiCl2. After chlorination has started at one CH2 group, formation of a CCl2 group is preferred before another CH2 group is involved into the reaction. Thus preparation of compounds a, b, c is possible. Cl3Si? CCl2? SiCl2? CH2? SiCl3 (a) for (b) and (c) (see “Inhaltsübersicht”). SO2Cl2 (benzoyl peroxide) as chlorinating agent reacts more slowly, and opens an access to carbosilanes containing CHCl groups such as (d), Cl3Si-CHCl? SiCl2? CH2? SiCl3 (e). Reactions of compounds (a) to (d) with LiAlH4 yields carbosilanes with SiH groups, and partially chlorinated C atoms. 2. By the high reactivity of Si? CCl2? Si groups an exchange of Cl atoms of CCl groups in perchlorinated carbosilanes is possible for H atoms of Si? H groups in perhydrogenated carbosilanes, thus allowing the preparation of compounds containing CHCl and SiHCl groups, e. g. according to Gl.(1) (Inhaltsübersicht). Further reactions, formulated as the last equations in Inhaltsübersicht, are reported as well as the rearrangement of H3Si? CHCl? SiH3. 相似文献
14.
Formation of organosilicon compounds. 47. The crystal land molecular structure of 1,3,5,7-tetramethyl-tetrasila-adamantan 1,3,5,7- Tetramethyl-tetrasila-adamantan, Si4C10H24, is a pyrolysis product of Si(CH3)4. It crystallizes in the monoclinic space group P21/c with a = 8.859 Å, b = 9.844 Å, c = 18.316 Å, β = 91.04°, Z = 4. The molecule exhibits Td-symmetry within the experimental error. The mean bond lengths Si? C are 1.889 Å and 1.866 Å for the Si? CH3 and Si? CH2 bonds respectively. 相似文献
15.
Formation of Organosilicon Compounds. 67. Studies of Metallorganic Synthesis of Si-methylated and C-chlorinated Carbosilanes Using Chlorocarbenoids Synthesis and reactions of C6H5me2Si? CCl2H (A), (H5C6me2Si)2CCl2 (B), and me2Si(CCl2H)2 (C) were investigated in order to find conditions for the synthesis of C-functional carbosilanes via chlorocarbenoids. (A) and (B) react with n-butyl-Li(buLi) (?100°C/THF/ether/pentane) yielding H5C6me2Si? CCl2Li and (H5C6me2Si)CClLi, respectively. These lithium reagents form (B) and(H5C6me2Si)3CCl with H5C6me2SiCl. In the reaction of (H5C6me2Si)3CCl with lithium (H5C6me2Si)3CLi (D) is obtained. (D) forms with H2O/HCl the compound (H5C6me2Si)3CH which is cleaved by HBr yielding (Brme2Si)3CH. (C) gives LiCCl2? Sime2(CCl2H) with buLi (molar ratio 1:1) in a low temperature reaction. Clme2Si? CCl2? Sime2(CCl2H) is formed in the reaction of LiCCl2? Sime2? CCl2H with Sime2CCl2 (yield >90%). Reacting (C) and buLi (1:3) and treating this solution with Sime2CI2 gives (ClSime2)2C?CH Sime2Cl (>85%) via a monosilacyclopropane intermediate. In the inverse reaction, if (C) is added to buLi, (HCCl2)me2SiC?Sime2(CCl2H) is one of the isolated reaction products. If buLi is added to (C) (2:l) and this solution is treated with Sime3Cl, compounds me3Si? CCL2? Sime2? CCL2H, me3Si? CClH? Sime2(CCl2H), (me3Si? CC12)2Sime2, me3Si? CHCI? Sime2? CC12? Sime3 are isolated. The same products were obtained in the reaction of me3Si? CCl2? Sime2? CCl2H with buLi and me3SiCl. 相似文献
16.
The synthesis of the HSi?resp. BrSi? containing 1,3,5,7-tetrasila-cyclooctanes (a) and (b) is described. (a) can be prepared from meH2Si? CH2? Sime2? CH2? SiHme? CH2? Sime2? CH2Br resp. from meBrHSi? CH2? Sime2? CH2? SiHme? CH2? Sime2? CH2Br with Li and converted to (b) with Br2. The siloxane (c) (m.p. 37–39°C) is formed by hydrolysis of (b) and also during the reaction of (b) with CH2Br2 and Li in (C2H5)2O because of a cleavage of the ether. 相似文献
17.
Bildung siliciumorganischer Verbindungen. 73. Reaktionen C-chlorierter 1,3-Disilapropane mit CH3MgCl
Formation of Organosilicon Compounds. 73. Reactions of C-chlorinated 1,3-Disilapropanes with CH3MgCl (Cl3Si)2CCl2 reacts with an excess of meMgCl (me = CH3) in Et2O (diethylether) forming (me3Si)22C?CH2 mainly besides Si-methylated 1,3-disilapropanes with CmeCl, CHCl, CH2 groups [6]. For investigating the mechanism of formation of the methylidengroup reactions were carried out with differently Si-methylated and Si-chlorinated 2-methyl-1-2-chloro-1,3-disilapropanes and 2,2-dichloro-1,3-disilapropanes. Whereas (me3Si)2CmeCl reacts neither with meMgCl nor with Lime. it forms (me3Si)2C?CH2 and (me3Si)2CmeH with Li or Mg resp. The reaction starts with the metallation to (me3Si)2CmeLi and (me3Si)2Cme(MgCl) resp., followed by elimination of LiH and HMgCl resp. with formation of (me3Si)2C?CH2. LiH and HMgCl resp. reduces (me3Si)2CmeCl to (me3Si)2CmeH. This mechanism is supported by the reactions of (me3Si)2CCl(CD3). The Si-chlorination increases the reactivity of the CmeCl group and the created C?CH2 group favours Si-methylation. The CCl2 group is more reactive than the CmeCl group; (me3Si)2CCl2 already forms the methyliden group with meMgCl in Et2O via the not isolated intermediate (me3Si)2CCl(MgCl). which prefers the methylation to (me3Si)2Cme(MgCl). The n.m.r. data of the investigated compounds are given. 相似文献
18.
Formation of Organosilicon Compounds. 96. Preparation and Structure of P-Ylides of the 1,3,5-Trisilahexanes (Influence of the Substituents) The influence of the substituents at the silicon atoms on formation and structure of ylides of 1,3,5-trisilacyclohexanesis investigated. The reactions of 1 , 2 , 3 with Me3Si? PMe2 lead via cleavage of the Si? P bond and subsequent rearrangement to the ylides 4 , 5 and 6 . The x-ray structure determination reveals, that the atoms of the ylid part of 4 are in a plane with the shortened bond distances d(C? P) = 168.6 pm and d(Si? C) = 180.1 pm, whereas the other endocyclic Si? C distances remain nearly unaffected by the ylid formation. Only the endocyclic bond angles C? Si? C of the Si atoms of the ylid are enlarged (116°). In the molecule 6 d(C? P) = 164.6 pm is much shorter, but d(P? Br) = 236.6 pm is enlarged. This enlargement is coupled with a deviation of 17 pm for the ylidic C atom from the ylid plane. Distances and angles are normal in the methylated trisilnhexane. The ring in 6 has boat conformation, in 4 a flat chair conformation. 相似文献
19.
Formation of Organosilicon Compounds. 99. Separation of Carbosilane and Silylphosphane Mixtures by Means of HPLC Test mixtures of Si-methylated carbosilanes were separated by means of reversedphase HPLC (nucleosil 5-C18; CH3OH:hexane = 90:10). The corresponding SiCl-containing mixtures were successfully separated only after reductin of the SiCl groups by means of LiAlH4 (CH3OH: C6H6 + H2O = 92.5:7.5 + 4—8%). A model separation of the silylphosphanes Me3SiPH2, (Me3Si)2PH and (Me3Si)3P using the same material but acetonitrile: toluene = 85:15 is also reported. 相似文献
20.
Formation of Organosilicon Compounds. 88. SiH-Addition of 1,3,5-Trisilacyclohexanes to Silylalkynes Catalyzed by means of H2PtCl6 the SiH addition of 1,1,3,3,5-pentamethyl-1,3,5-trisilacyclohexane to HC?C? Sime2CH2Cl, and of 1,1,3,3,5-pentaphenyl-1,3,5-trisilacyclohexane to HC?C? Sime2CH2Br yields a and b , or c and d , resp. (Formulae see Inhaltsübersicht), whereas 1,3,5-trisilacyclohexanes with more SiH groups preferrably yield polymers. The c/d ratio is strongly governed by the solvent: 38% c in n-hexane, 72% c in CCl4/cyclohexane. Treatment of c and d with HCl/AlCl3 under cleavage of all of the phenyl groups, addition of HCl to the vinyl group and subsequent β-elimination leads to (Cl2Si? CH2)3 ClSime2? CH2Br and compound e , whereas HBr at ?78°C only cleaves one phenyl group per Si atom. 相似文献