首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
孙敏  李春英  孙明霞  冯洋  冯加庆  孙海丽  冯娟娟 《色谱》2022,40(10):889-899
因具有良好的萃取性能,有机气凝胶已被应用于样品前处理领域,为了进一步改善其对多环芳烃类污染物的萃取能力,利用氧化石墨烯对三聚氰胺-甲醛气凝胶进行改性,制备了一种氧化石墨烯功能化三聚氰胺-甲醛气凝胶,将其作为萃取涂层涂覆到不锈钢丝表面,通过扫描电镜和X射线光电子能谱对萃取涂层进行表征,结果表明氧化石墨烯并未破坏气凝胶的三维网络多孔结构。将4根气凝胶涂覆的不锈钢丝装进一根长度30 cm、内径0.75 mm的聚醚醚酮管内,制备了一种新型的纤维填充型固相微萃取管。将萃取管与高效液相色谱联用,构建管内固相微萃取-液相色谱在线富集分析系统。以8种多环芳烃(萘(Nap)、苊烯(Acy)、苊(Ace)、芴(Flu)、菲(Phe)、蒽(Ant)、荧蒽(Fla)和芘(Pyr))作为模型分析物,评价了萃取管的萃取性能,考察了氧化石墨烯对气凝胶萃取性能的改善,结果表明萃取效率被提升至最高2.5倍。详细考察了样品体积、样品流速、样品中有机溶剂浓度以及脱附时间对于萃取效率的影响,并建立了管内固相微萃取-液相色谱在线分析方法。该法对8种多环芳烃分析物的检出限为0.001~0.005μg/L,萘、苊烯、苊、芴的线性范围为0.017~20.0μg/L,菲、蒽的线性范围为0.010~20.0μg/L,荧蒽和芘的线性范围为0.003~15.0μg/L,精密度良好(日内重复性RSD≤4.8%,日间重复性RSD≤8.6%)。研究所发展的分析方法比已报道的某些分析方法具有更好的灵敏度、更宽的线性范围和更短的分析时间,并具有在线富集和在线分析的独特优点。将该分析方法应用于常见饮用水(包括瓶装矿泉水和饮水机的直饮水)中多环芳烃的分析检测,加标回收率试验结果(76.3%~132.8%)表明该分析方法能够高灵敏、快速、准确地检测饮用水中痕量多环芳烃污染物。经过稳定性考察,发现研究所制备的固相微萃取管在实验过程中表现出良好的使用寿命和化学稳定性。  相似文献   

2.
ACF-SPME检测海洋水体中的多环芳烃   总被引:1,自引:0,他引:1  
使用新型活性炭纤维(ACF)作为固相微萃取(SPME)技术的萃取纤维,检测了海水中的多环芳烃。得到ACF-SPME萃取多环芳烃的最优条件为:在搅拌条件下,盐浓度10%,pH3,温度60℃水浴中直接萃取40min。并确定16种多环芳烃的RSD(n=5)为1.8%~10%、线性范围为0.1~500μg/L、检出限为0.1~100μg/L。对东海近海海水进行了分析,结果表明海水中PAHs浓度在检测限以下,同时进行加标回收实验,得到16种多环芳烃的回收率在80%~128%。  相似文献   

3.
利用化学沉积法在高温退火后的TiO2纳米颗粒上原位组装硫化铜掺杂TiO2复合固相微萃取纤维(CuS@TiO2NPs/Ti)。优化了钛丝氧化时间、 TiO2退火温度、 CuS的循环沉积次数。利用场发射扫描电子显微镜和能量色散X-射线光谱仪对纤维表面进行形貌表征和成分分析。将制备的固相微萃取纤维与高效液相色谱联用(SPME-HPLC),测定水溶液中的典型芳香化合物。在最佳固相微萃取条件下,该纤维对多环芳烃(PAHs)萃取分析的回归方程线性范围为0.15~200μg/L,线性相关系数在0.9913~0.9985之间;检出限和定量限分别为0.02~0.04μg/L和0.07~0.13μg/L。单个纤维测定5次和3根纤维测定3次的相对标准偏差分别在3.2%~4.3%和4.6%~6.8%之间。利用该纤维开发的SPME-HPLC的方法,可应用于复杂环境水样中PAHs的灵敏测定。  相似文献   

4.
采用固相微萃取技术,以100μm膜厚的聚二甲基硅氧烷纤维萃取水中10种多环芳烃,在60min采样时间内纤维上的吸附量与采样的时间近乎成正比,分配体系达到平衡前可以定量地测定水中的待测物.该方法的线性范围在0.1~100μg/L,检出限在0.01~0.03μg/L,15μg/L的回收率在80%~100%,相对标准偏差在20%以下.  相似文献   

5.
陈娜  张毅军  赵万里  陈军  张裕平 《色谱》2018,36(1):5-11
采用氯化胆碱-乙二醇低共熔溶剂(DES)作致孔剂,制备了聚(甲基丙烯酸丁酯-乙二醇二甲基丙烯酸酯)[poly(BMA-EDMA)]固相微萃取头,并与超高效液相色谱法(UPLC)结合测定了湖水中的3种多环芳烃(PAHs)。实验与不使用DES致孔剂的固相微萃取头和商品化聚二甲硅氧烷(PDMS)萃取头进行比较,含DES的poly(BMA-EDMA)固相微萃取头的富集效果最好。系统考察了萃取条件(萃取时间、萃取溶剂、解吸时间、解吸溶剂及离子强度)对水样中多环芳烃萃取效率的影响。在最优的实验条件下,3种多环芳烃类化合物(萘、联苯、菲)的线性范围为0.1~6.0 mg/L(r≥0.990 3),检出限为2.1~4.9μg/L,回收率为86.4%~111.3%,相对标准偏差(RSD,n=6)为11.2%~15.1%。该法操作简便,稳定性好,成本低,适用于实际环境水样中多环芳烃类化合物的测定。  相似文献   

6.
活性炭纤维经改性剂浸渍,水蒸气高温活化后,增大了其对水中多环芳烃的选择性和吸附量,提高了检出限。活性炭纤维活化的最佳条件:在45%磷酸中浸渍6 h,水蒸气中活化30 min,活化温度为500℃。与未改性炭纤维相比,改性后的炭纤维经固相微萃取技术与气相色谱联用测定16种多环芳烃(PAHs),检出限由0.5~50μg/L降至0.01~0.5μg/L,加标回收率由46%~112%增至74%~124%。方法的灵敏度和准确性得到明显的改善,提高了该技术的实际应用价值。  相似文献   

7.
采用溶胶-凝胶方法合成了石墨烯复合材料,将其均匀地涂在铜丝表面制备了石墨烯固相微萃取纤维,结合固相微萃取-气相色谱-电子捕获检测器(SPME-GC-ECD)技术,建立了对环境中类二英多氯联苯(DL-PCBs)的直接测定方法。实验优化了萃取温度、萃取时间、pH值和离子强度等固相微萃取条件。在优化条件下,石墨烯固相微萃取纤维较商品化纤维(100μm PDMS、75μm CAR/PDMS、85μm PA)的萃取效率平均高2倍。对于DL-PCBs分析,该方法在0.05~3.5μg.L-1范围内呈良好线性(除PCB169外,r2均高于0.99),检出限为4.7~8.8 ng.L-1,单个纤维间及纤维与纤维间的相对标准偏差分别为1.4%~8.1%和2.4%~12.8%。该纤维对12种环境样品中DL-PCBs加标0.5μg.L-1和2 ng.g-1的回收率为87%~120%。方法简单、快速、灵敏,可实现对多氯联苯的痕量检测。  相似文献   

8.
冯娟娟  孙明霞  冯洋  辛绪波  丁亚丽  孙敏 《色谱》2022,40(11):953-965
样品前处理技术在样品分析中发挥着越来越重要的作用,而对分析物的富集能力和对样品基体的净化程度主要取决于高效的样品前处理材料,所以发展高性能的样品前处理材料一直是该领域的前沿研究方向。近年来,各类先进材料已经被引入样品前处理领域,发展了多种高性能的萃取材料。由于独特的物理化学性质,石墨烯已在各个研究领域获得广泛关注,在样品前处理领域也发挥着重要作用。基于高的比表面积、大的π电子结构、优异的吸附性能、丰富的官能团和易于化学改性等优点,石墨烯和氧化石墨烯基萃取材料被成功应用于各种样品的前处理,对不同领域中多种类型分析物表现出优异的萃取性能。该论文总结和讨论了近3年来石墨烯材料(石墨烯、氧化石墨烯及其功能化材料)在柱固相萃取、分散固相萃取、磁性固相萃取、搅拌棒萃取、纤维固相微萃取和管内固相微萃取等方面的研究进展。基于多种萃取机理如π-π、静电、疏水、亲水、氢键等相互作用,石墨烯萃取材料能够高效萃取和选择性富集不同类别的目标分析物,如重金属离子、多环芳烃、塑化剂、雌激素、药物分子、农药残留、兽药残留等。基于新型石墨烯萃取材料的各种样品前处理技术与多种检测技术如色谱、质谱、原子吸收光谱等联用,广泛应用于环境监测、食品安全和生化分析等领域。最后,总结了石墨烯在样品前处理领域中存在的问题,并展望了未来的发展趋势。  相似文献   

9.
颜丽芬  吕研  邵琳  周清娣  董南 《色谱》2014,(12):1295-1300
以四氯化镉酸根离子[CdCl4]2-诱导形成的Eu3+-七元瓜环(Q[7]/Eu)多维配位聚合物为涂层材料,采用高温环氧树脂固定涂层制备了一种新型固相微萃取纤维。利用电镜和热重分析对纤维的表面形态和热稳定性进行了考察。实验结果表明该聚合物涂层表面疏松、多孔,热稳定性好。在优化的实验条件下(萃取温度75℃,NaCl质量浓度为200 g/L,萃取时间40 min,250℃下解吸2 min)结合GC/FID的方法测定了水样中萘、苊、芴、菲、蒽、荧蒽、芘7种多环芳烃(PAHs)化合物。7种PAHs的线性范围为1~1 000μg/L,检出限在0.29~2.09μg/L之间,相对标准偏差(RSD,n=5)不大于8.6%。将建立的方法用于实际样品花溪河水中PAHs加标回收率的测定,回收率在97.2%~109.0%之间,结果令人满意。在各自的最优萃取条件下,该涂层对7种PAHs的萃取效果与商品PDMS的萃取效果相当,证明该Q[7]/Eu多维配位聚合物在固相微萃取方面具有应用潜力。  相似文献   

10.
建立了同时检测蔬菜中16种多环芳烃(PAHs)和11种卤代多环芳烃(X-PAHs)污染水平的分散固相萃取-气相色谱-串联质谱(GC-MS/MS)分析方法。样品中的多环芳烃和卤代多环芳烃经正己烷提取,N-丙基乙二胺吸附剂(PSA)和十八烷基键合硅胶吸附剂(C18)分散固相萃取净化剂净化,气相色谱-串联质谱方法测定,外标法定量。16种PAHs和11种X-PAHs在50,100和200μg/kg添加浓度下的回收率为74.7%~115.1%,相对标准偏差为1.6%~15.3%,方法检出限为0.03~7.4μg/kg。  相似文献   

11.
A new polyethylene glycol/graphene oxide composite material bonded on the surface of a stainless‐steel wire was used for solid‐phase microextraction. The layer‐by‐layer structure increased the adsorption sites of the novel fiber, which could facilitate the extraction of trace compounds. The polyethylene glycol/graphene oxide was characterized by Fourier transform infrared spectroscopy and elemental analysis, which verified that polyethylene glycol was successfully grafted onto the surface of graphene oxide. The performance of the polyethylene glycol/graphene oxide coated fiber was investigated for phenols and phthalate esters coupled with gas chromatography with flame ionization detection under the optimal extraction and desorption conditions, and the proposed method exhibited an excellent extraction capacity and high thermal stability. Wide linear ranges were obtained for the analytes with good correlation coefficients in the range of 0.9966–0.9994, and the detection limits of model compounds ranged from 0.003 to 0.025 μg/L. Furthermore, the as‐prepared fiber was used to determine the model compounds in the water and soil samples and satisfactory results were obtained.  相似文献   

12.
Graphene oxide was bonded onto a silver‐coated stainless‐steel wire using an ionic liquid as the crosslinking agent by a layer‐by‐layer strategy. The novel solid‐phase microextraction fiber was characterized by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and Raman microscopy. A multilayer graphene oxide layer was closely coated onto the supporting substrate. The thickness of the coating was about 4 μm. Coupled with gas chromatography, the fiber was evaluated using five polycyclic aromatic hydrocarbons (fluorene, anthracene, fluoranthene, 1,2‐benzophenanthrene, and benzo(a)pyrene) as model analytes in direct‐immersion mode. The main conditions (extraction time, extraction temperature, ionic strength, and desorption time) were optimized by a factor‐by‐factor optimization. The as‐established method exhibited a wide linearity range (0.5–200 μg/L) and low limits of determination (0.05–0.10 μg/L). It was applied to analyze environmental water samples of rain and river water. Three kinds of the model analytes were quantified and the recoveries of samples spiked at 10 μg/L were in the range of 92.3–120 and 93.8–115%, respectively. The obtained results indicated the fiber was efficient for solid‐phase microextraction analysis.  相似文献   

13.
A solid-phase microextraction fiber was prepared by polyaniline/graphene oxide nanocomposite as sorbent on the surface of a platinized stainless steel wire using electrospinning technique. The nanocomposite structure was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The polyaniline/graphene oxide nanocomposite fiber was used for the determination of nicotine from tobacco samples using headspace solid-phase microextraction method and gas chromatography–flame ionization detection. Influential experimental variables on the extraction efficiency of nicotine, such as extraction time and temperature, humidity and desorption conditions, were evaluated and optimized. Under the optimal experimental conditions? the limit of detection, linear dynamic range, intraday and inter-days precisions were found to be 0.01 μg g?1, 0.05–700 µg g?1 (R2?=?0.996), 6.9 and 8.1%, respectively. Comparison of the polyaniline/graphene oxide nanocomposite sorbent with polyaniline and commercial fibers shows longer durability, larger capacity and higher extraction efficiency. The polyaniline/graphene oxide nanocomposite fiber was successfully applied for the determination of nicotine in tobacco samples.  相似文献   

14.
In this work, a new solid-phase microextraction fiber was prepared based on nitrogen-doped graphene (N-doped G). Moreover, a new strategy was proposed to solve problems dealt in direct coating of N-doped G. For this purpose, first, Graphene oxide (GO) was coated on Pt wire by electrophoretic deposition method. Then, chemical reduction of coated GO to N-doped G was accomplished by hydrazine and NH3. The prepared fiber showed good mechanical and thermal stabilities. The obtained fiber was used in two different modes (conventional headspace solid-phase microextraction and cold-fiber headspace solid-phase microextraction (CF-HS-SPME)). Both modes were optimized and applied for the extraction of benzene and xylenes from different aqueous samples. All effective parameters including extraction time, salt content, stirring rate, and desorption time were optimized. The optimized CF-HS-SPME combined with GC-FID showed good limit of detections (LODs) (0.3–2.3 μg/L), limit of quantifications (LOQs) (1.0–7.0 μg/L) and linear ranges (1.0–5000 μg/L). The developed method was applied for the analysis of benzene and xylenes in rainwater and some wastewater samples.  相似文献   

15.
A solid‐phase microextraction fiber was prepared by mixing graphene oxide and hydroxyl‐terminated polydimethylsiloxane together and then coating the mixture on the surface of etched stainless‐steel wire by sol–gel technology. After aging by heating, the graphene oxide‐polydimethylsiloxane composite coated fiber was used for the direct solid phase microextraction of triazole fungicides from water samples. The properties of the graphene oxide‐polydimethylsiloxane coating were characterized by transmission electron microscopy and thermogravimetric analysis. And the chemical stability of the coating was tested as well. Several important experimental parameters that could influence the extraction efficiency such as desorption temperature and time, extraction temperature and time, sample pH and stirring rate, were investigated and optimized. Under the optimized conditions, the limits of detection were in the range from 0.01 to 0.03 μg/L. The results indicated that the homemade fiber had the advantages of good thermal and chemical stability and high extraction efficiency, which was successfully applied to the analysis of triazoles in water samples.  相似文献   

16.
A novel C18 functionalized graphene oxide (GO) coated solid-phase microextraction fiber was prepared by a novel protocol. Based on the strong van der Waals interaction present in GO and abundant oxygenous groups in GO sheets, a simple layer-by-layer self-assembly method was used in the preparation process and then C18 was successfully self-assembled on GO via C-O-Si bonding. Coupled with gas chromatography, extraction performance of the fiber was tested with polycyclic aromatic hydrocarbons (PAHs) as model analytes. The fiber not only exhibited excellent extraction efficiency and selectivity, but also showed many advantages including high rigidity, long service life and well stability toward organic solvent, acidic and alkali solutions, and high temperature. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 7.26 and 17.25%, respectively. The detection limits to the PAHs were less than 0.08 μg L(-1) and the calibration curves were linear in a wide range for all analytes. The as-established Solid-phase microextraction GC method was also successfully used for determination of PAHs in two real water samples.  相似文献   

17.
A highly porous fiber-coated SBA-15/polyaniline material was prepared for solid-phase microextraction (SPME). The SBA-15/polyaniline nanocomposite was synthesized via chemical polymerization. The prepared SBA-15/polyaniline particles were analyzed by scanning electron microscopy analysis. The prepared nanomaterial was immobilized onto a stainless steel wire for fabrication of the SPME fiber. The fiber was evaluated for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions in combination with gas chromatography-mass spectrometry (GC-MS). In optimum conditions (extraction temperature 60°C, extraction time 40 min, ionic strength 20%, stirring rate: 500 rpm, desorption temperature 260°C, desorption time 2 min), the repeatability for one fiber (n=3), expressed as relative standard deviation (RSD%), was between 5.3 and 8.6% for the test compounds. For deionized water, spiked with selected PAHs, the detection limits for the studied compounds were between 2 and 20 pg/mL.  相似文献   

18.
A novel polypyrole/graphene oxide coating was made by the electrochemical polymerization of pyrrole in the presence of sodium dodecyl sulfate and graphene oxide on a platinum wire. The prepared fiber has shown a good thermal stability up to 300°C. The fiber was applied to the direct solid‐phase microextraction and gas chromatographic analysis of four phthalate esters. The effect of four parameters on gas chromatography peak area including extraction temperature, extraction time, injection temperature, and ionic strength were investigated. Under the optimized conditions, the detection limits were between 0.042 and 0.26 μg/L. The intraday and interday relative standard deviations obtained at 55 μg/L, using a single fiber, were 8.2–16% and 17.3–25.6%, respectively. The method was successfully applied to the analysis of phthalate esters in two real samples of boiling water in cheap disposable clear plastic drinking cups showing recoveries from 83 to 120%.  相似文献   

19.
Periodic mesoporous organosilica based on alkylimidazolium ionic liquid (PMO-IL) was prepared and used as a highly porous fiber coating material for solid-phase microextraction (SPME). The prepared nanomaterial was immobilized onto a stainless steel wire for fabrication of the SPME fiber. The fiber was evaluated for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions in combination with gas chromatography–mass spectrometry (GC–MS). A one at-the-time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, and desorption temperature and time. In optimum conditions, the repeatability for one fiber (n = 3), expressed as relative standard deviation (R.S.D.%), was between 4.3% and 9.7% for the test compounds. The detection limits for the studied compounds were between 4 and 9 pg mL−1. The developed method offers the advantage of being simple to use, with shorter analysis time, lower cost of equipment, thermal stability of fiber and high relative recovery in comparison to conventional methods of analysis.  相似文献   

20.
Feng J  Sun M  Xu L  Li J  Liu X  Jiang S 《Journal of chromatography. A》2011,1218(43):7758-7764
Polymeric 1-vinyl-3-octylimidazolium hexafluorophosphate was synthesized in situ on stainless steel wire by surface radical chain-transfer polymerization and used as sensitive coatings in solid-phase microextraction. The outer surface of the stainless steel wire was firstly coated with microstructured silver layer via silver mirror reaction and then functionalized with self-assembled monolayers of 1,8-octanedithiol, which acted as chain transfer agent in the polymerization. Coupled to gas chromatography, extraction performance of the fiber was studied with both headspace and direct-immersion modes using benzene, toluene, ethylbenzene and xylenes (BTEX), phenols and polycyclic aromatic hydrocarbon (PAHs) as model analytes. In combination with the microstructured silver layer, the PIL-coated fiber exhibited high extraction efficiency. Linear ranges for BTEX with headspace mode were in the range of 0.2-1000 μg L(-1) for benzene, and 0.1-1000 μg L(-1) for toluene, ethylbenzene and xylenes. Limits of detection (LODs) were from 0.02 to 0.05 μg L(-1). Wide linear ranges of direct-immersion mode for the extraction of several phenols and PAHs were also obtained with correlation coefficients (R) from 0.9943 to 0.9997. The proposed fiber showed good durability with long lifetime. RSDs of 56 times extraction were still in an acceptable range, from 8.85 to 22.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号