共查询到20条相似文献,搜索用时 15 毫秒
1.
Chitosan-supported copper (chit@copper) based heterogeneous catalysts have been explored for A3-coupling and decarboxylative A3-coupling. The developed protocol employs low catalyst loading, solventless condition and easy work-up for the synthesis of diversely substituted propargylamines. More importantly, the catalyst could be recovered and reused without any significant loss in the activity. This offer huge advantages as recyclability issues are rarely addressed in decarboxylative A3-coupling. Leaching studies were carried out using AAS and ICPMS analysis. It is envisaged that chit@copper catalysts can have potential applications in terms of efficiency and recyclability in the emerging area of decarboxylative CH bond activation/functionalization strategies. 相似文献
2.
Sedigheh Alavinia Ramin Ghorbani-Vaghei Jamshid Rakhtshah Jaber Yousefi Seyf Iman Ali Arabian 《应用有机金属化学》2020,34(3):e5449
A porous cross-linked poly (ethyleneamine)-polysulfonamide (PEA-PSA) as a novel organic support system is synthesized in the presence of silica template by nanocasting technique. The paper demonstrates immobilization of CuI nanoparticles inside the pores (PEA-PSA@CuI) for the facile recovery and recycling of these nanoparticles. The presence of porous PEA-PSA and PEA-PSA@CuI nanocomposites was confirmed using FT-IR spectroscopy, FE-SEM, EDX, TGA, XRD, TEM, BET, XPS, WDX, 1H NMR, and ICP-OES techniques. The PEA-PSA@CuI along with Ag(I)/K2S2O8 was implemented as a reusable cooperative catalyst-oxidant system in the N-arylation of p-toluenesulfonamide with substituted carboxylic acids in mild condition. So, the novel decarboxylative cross-coupling catalyzed by copper and silver has been developed. Aromatic, secondary and tertiary aliphatic acids underwent high efficient decarboxylative processes with p-toluenesulfonamide to afford the corresponding products. This method provides a practical approach for the flexible synthesis of sulfonamides from the readily affordable substrates. The catalyst is highly reusable and efficient, especially in terms of time and yield of the desired product. 相似文献
3.
A solvent-free, eco-friendly and facile approach for the synthesis of highly functionalized tetrasubstituted pyrroles has been reported through one-pot four-component reaction of aldehyde, amine, nitroalkane and 1,3-diketone using silica gel supported polyphosphoric acid (PPA–SiO2) under microwave condition. The reaction occured through the in situ formation of β-keto enamine and nitrostyrene analog following Michael addition and finally intramolecular annulation affording the products in good yields. The key features of the present method include clean reaction, mild conditions, low catalyst loading, straightforward, high to excellent yields, short reaction time, avoiding use of harmful metal catalyst and organic solvent, environmentally friendly compared to the existing methods, recovery and reusability of catalyst and easy workup procedure. 相似文献
4.
Naghmeh Esfandiary Farzane Pazoki Athar Nakisa Kobra Azizi Iman Radfar Akbar Heydari 《应用有机金属化学》2020,34(8):e5725
A highly efficient Fe3O4@VitB1–Ag(I) magnetic catalyst has been obtained using surface modification of Fe3O4. To this end, silver chloride was immobilized on Fe3O4 nanoparticles via vitamin B1 biomolecules. The synthesized biocompatible magnetic catalyst was applied in an A3-coupling reaction in the presence of aldehyde, amine and phenyl acetylene under solvent-free conditions and afforded the desired products in excellent yields. Also, interactions between metal and ligand in the Fe3O4@VitB1–Ag(I) were studied using theoretical calculations. 相似文献
5.
Chenyi Yuan Xiqing Wang Xuanyu Yang Abdulaziz A. Alghamdi Fahad A. Alharthi Xiaowei Cheng Yonghui Deng 《中国化学快报》2021,32(6):2079-2085
Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_3 O_4@carbon microspheres(Fe_3 O_4@C-SO_3 H) have been designed and synthesized as an efficient and recyclable heterogeneous acid catalyst.For the synthesis,core-shell Fe_3 O_4@RF(resorcinol-formaldehyde) microspheres with tunable shell thickness were achieved by interfacial polymerization on magnetic Fe_3 O_4 microspheres.After high-temperature carbonization,the microspheres were eventually treated by surface sulfonation,re sulting in Fe_3 O_4@C-x-SO_3 H(x stands for carbonization temperature) microspheres with abundant surface SO_3 H groups.The obtained microspheres possess uniform core-shell structure,partially-graphitized carbon skeletons,superparamagnetic property,high magnetization saturation value of 10.6 emu/g,and rich SO_3 H groups.The surface acid amounts can be adju sted in the range of 0.59-1.04 mmol/g via sulfonation treatment of carbon shells with different graphitization degrees.The magnetic Fe_3 O_4@C-x-SO_3 H microspheres were utilized as a solid acid catalyst for the acetalization reaction between benzaldehyde and ethylene glycol,demonstrating high selectivity(97%) to benzaldehyde ethylene glycol acetal.More importantly,by applying an external magnetic field,the catalysts can be easily separated from the heterogeneous reaction solutions,which later show well preserved catalytic activity even after 9 cycles,revealing good recyclability and high stability. 相似文献
6.
Pd/Fe3O4-MCNT磁性催化剂的制备、表征及催化性能 总被引:1,自引:0,他引:1
利用多元醇法制备了单分散Fe3O4纳米粒子修饰多壁碳纳米管(MCNT)的磁性复合材料, 并以X射线衍射(XRD)、透射电镜(TEM)和X射线能量色散谱(EDS)对碳纳米管磁性复合材料的结构和组成进行了表征. 研究发现, 通过调控Fe3O4前驱体与MCNT载体的质量比, 可以很好地控制沉积的磁性纳米粒子大小. 以碳纳米管磁性复合材料为载体, 采用多元醇法成功制备了Pd负载量为3.0% (w)的Pd/Fe3O4-MCNT磁性催化剂. 磁性质测试表明碳纳米管磁性复合材料在负载Pd前后都具有良好的超顺磁性. 以肉桂醛加氢为探针反应研究了Pd/Fe3O4-MCNT的催化性能, 结果表明该催化剂表现出良好的催化加氢性能, 在外加磁场下催化剂能与液相反应体系高效分离, 循环使用4次后, 催化性能没有明显下降, 显示了良好的循环利用性能. 相似文献
7.
A variety of terminal arylacetylenes have been conveniently synthesized in good to high yields via Sonogashira coupling of aryl iodides with (trimethylsilyl)acetylene catalyzed by MCM-41-supported mercapto palladium(0) complex, followed by desilylation under mild conditions. This polymeric palladium catalyst can be reused many times without any decrease in activity. 相似文献
8.
过一硫酸盐催化活化技术因其可产生强氧化性活性氧化物种,可快速氧化降解并矿化有机污染物的优异性能而备受关注.本文成功制备了亚微米级Cu0/Fe3O4复合物,发现其能多相催化过一硫酸盐产生单线态氧降解有机污染物.首先,以CuCl2·2H2O,FeCl2·4H2O和FeCl3·6H2O为铜源和铁源,水合肼为还原剂,采用水热法在180oC反应24 h制备了亚微米级磁性Cu0/Fe3O4复合物.表征结果显示,所制材料为Cu0和Fe3O4的复合物,颗粒大小约为220 nm;单一相Cu0和Fe3O4晶体粒径分别为33.8和106.2 nm,而Cu0/Fe3O4复合物中Cu0和Fe3O4晶体粒径分别减为20.8和31.9 nm.这表明Cu0和Fe3O4复合降低了Cu0和Fe3O4晶体粒径,有利于Cu0和Fe3O4的分散.BET测试结果表明,Cu0/Fe3O4复合物比表面积为4.6 m2/g,与Cu0颗粒的(4.2 m2/g)相当,但远小于Fe3O4的(15.6 m2/g).制备的Cu0/Fe3O4复合物可有效催化过一硫酸盐产生单线态氧降解罗丹明B、亚甲基蓝、金橙II、苯酚和对氯酚.当Cu0/Fe3O4复合物的用量为0.1 g/L,过一硫酸盐浓度为0.5 mmol/L和初始pH为7时,Cu0/Fe3O4复合物可在30 min内完全降解20μmol/L的罗丹明B、亚甲基蓝、金橙II以及0.1 mmol/L的苯酚和对氯酚.对比试验显示,在相同条件下,Cu0和Fe3O4颗粒分别可以降解28%和20%的罗丹明B.这表明Cu0/Fe3O4复合物中的Cu0和Fe3O4晶体在催化过一硫酸盐降解污染物的反应中具有协同作用,这主要来源于Cu0/Fe3O4复合物中Cu0和Fe3O4的晶体粒径变小和更好的分散.采用分光光度法测定了降解反应液中铜和铁离子的溶出量.当Cu0/Fe3O4复合物的用量为0.1 g/L,过一硫酸盐浓度为0.5 mmol/L和初始pH为7时,反应60 min后,降解液中铜和铁离子的浓度分别为0.22和0.1 mg/L,仅占复合物中总铜和总铁量的1.1%和0.2%,表明Cu0/Fe3O4复合物具有较强的化学稳定性.所制Cu0/Fe3O4复合物具有超顺磁性,借助磁场实现快速分离回收,可循环利用五次,表明其优越的催化稳定性.通过加入乙醇和叠氮化钠,考察了Cu0/Fe3O4复合物催化活化过一硫酸盐体系中的活性氧化物种.发现100 mmol/L乙醇的加入对污染物的降解无明显影响,而加入同等量的叠氮化钠可完全抑制污染物的降解,表明Cu0/Fe3O4复合物催化活化过一硫酸盐产生的主要活性氧物种为单线态氧.采用电子顺磁共振谱进一步证实了单线态氧的生成.基于以上研究,Cu0/Fe3O4复合物催化活化过一硫酸盐的机理为Cu0/Fe3O4作为一个电子媒介加速过一硫酸盐和污染物之间的电子转移,从而导致污染物被快速降解.该反应机理不同于常见的金属催化过一硫酸盐产生硫酸根和羟自由基的反应机理.我们推测,电导性优良的Cu0在此催化反应中起着关键性作用.本催化方法可作为一种绿色的氧化技术用于环境污染物的氧化降解处理. 相似文献
9.
In this work, we synthesized Ni2+-containing 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium chloride ionic liquid on magnetic Fe3O4 nanoparticles. The catalytic activity of these novel nanocomposites was finally evaluated for the Heck reaction at 100 °C, and can be reused after washing without loss in activity. The immobilized ionic liquid catalysts proved to be effective and easily separated from the reaction media by applying an external magnetic field. This procedure has many obvious advantages compared to those reported in the previous literature, including avoidance of the use of the expensive Pd catalysts, mild reaction conditions, high yields, and simplicity of the methodology. 相似文献
10.
Basuvaraj Suresh Kumar Rajagopal Anbarasan Arlin Jose Amali Kasi Pitchumani 《Tetrahedron letters》2017,58(33):3276-3282
Cubical Pd nanoparticles incorporated magnetic nanospheres (Pd cNPs/C@Fe3O4) are found to be efficient catalysts for Stille and Mizoroki-Heck coupling reactions. A variety of aryl halides, including chlorides, are converted to biaryls and diphenylethenes with excellent yield and high TON. This immobilization of Pd cNPs on the surface C@Fe3O4 results in structurally stable catalytic sites. The observed enhanced catalytic activity is attributed to the high density of low-coordinated Pd {1 0 0} atoms present at the surface of the Pd cNPs/C@Fe3O4 catalyst. The advantages of the proposed catalytic system are its heterogeneity, high stability, absence of any toxic ligands, gram scale applicability, magnetic separability and consequent reusability. 相似文献
11.
12.
金属有机骨架材料具有大比表面积、高孔隙率、热稳定性好、规整且可调控的孔结构、易于功能化的骨架金属离子和有机配体等优点,是制备多相催化剂的重要材料之一.虽然减小金属有机骨架材料等多孔材料的粒径可以提高反应物的传质效率,从而提高其催化活性;但是,纳米尺寸催化剂的分离和回收困难.将磁性纳米粒子和金属有机骨架材料结合制备具有核-壳结构的磁性金属有机骨架材料是解决上述问题的有效方法.此类材料兼具磁性材料和金属有机骨架材料的双重优势,既可以磁性分离,又具有金属有机骨架材料的催化活性.而且,厚度可控的壳层材料表现出与纳米催化剂相当甚至更好的催化活性.我们采用逐层自组装方法制备了核-壳结构的磁性Fe3O4@Cu3(BTC)2复合材料,并对材料进行氨基化修饰,制备了基于金属有机骨架材料的磁性多相碱催化剂.采用粉末X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、透射电镜(TEM)、扫描电镜(SEM)、氮气吸附等方法对材料的组成和结构进行了表征,并考察了材料在Knoevenagel缩合反应中的催化性能.首先采用粉末XRD表征材料的晶体结构.在复合材料Fe3O4@Cu3(BTC)2的XRD谱中,同时出现了Fe3O4和Cu3(BTC)2的特征衍射峰.采用氨基配体修饰后,材料的XRD谱没有明显变化,说明修饰后的材料保持了Fe3O4@Cu3(BTC)2的晶体结构.透射电镜结果表明,包裹25次得到的磁性复合材料Fe3O4@Cu3(BTC)2是以Fe3O4为核心,以Cu3(BTC)2为壳的核-壳结构,壳层厚度大约为200 nm.氨基修饰后,材料的透射电镜图相对修饰前无明显变化.扫描电镜结果表明,合成的Fe3O4为球形结构,粒径为100-600 nm.采用Cu3(BTC)2进行包裹后,在Fe3O4表面生长了由Cu3(BTC)2纳米颗粒组成的壳层.采用氨基配体修饰后,材料的形貌无明显改变.进一步采用氮气吸附表征材料的孔结构并测定材料的比表面积和孔体积.结果表明,由于大比表面的Cu3(BTC)2的引入,复合材料Fe3O4@Cu3(BTC)2的比表面积增大为462 m2/g,孔体积为0.38 cm3/g.氨基修饰后,材料的比表面积和孔体积都有较大程度的降低,说明配体分子占据了壳层材料Cu3(BTC)2中的纳米孔道.采用苯甲醛和氰基乙酸乙酯的Knoevenagel缩合反应作为模型,考察了材料的催化活性.研究发现,Fe3O4对此反应几乎没有活性,Fe3O4@Cu3(BTC)2给出了中等的催化活性.在材料上引入氨基后,由于氨基和Cu3(BTC)2上的Lewis酸性位点的协同效应,在很大程度了提高了材料的催化活性.溶剂效应实验结果表明,反应溶剂对材料的活性和选择性具有较大影响,极性或质子性溶剂有利于反应的进行.多相催化剂的循环稳定性是其重要评价指标之一.热过滤实验结果表明,滤液中无催化活性,反应中的催化活性来源于固体材料,此催化反应为多相催化.随后考察了材料的循环稳定性.虽然氨基化Fe3O4@Cu3(BTC)2材料在溶剂DMSO中表现出最高的催化活性,但XRD和电镜表征结果表明,材料在DMSO中结构遭到破坏,因此循环过程中催化剂的活性损失严重.然后考察了氨基化材料在乙醇中的循环稳定性,发现材料在乙醇中表现出较好的循环稳定性.通过简单磁性分离进行催化剂的分离和回收,催化剂循环使用3次而没有明显的活力损失.而且,XRD和电镜表征结果显示,催化剂的结构在反应过程中没有遭到明显破坏. 相似文献
13.
Many efforts have been devoted to the integration of magnetic nanoparticles and metal organic frameworks, which makes it easy and simple to separate the nano-sized metal organic frameworks from liquid phase. Amino-functionalized magnetic metal organic frameworks[Fe3O4@MIL-100(Fe)-NH2]were prepared by a stepwise assembly method followed by post-modification with electron-rich reagent. This magnetic catalyst was characterized by means of X-ray diffraction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) and nitrogen adsorption, and tested in Knoevenagel condensation as a base catalyst. The magnetic catalyst exhibits a core-shell structure and can afford a high activity for the Knoevenagel condensation due to its bifunctional property and reduced diffusion limitation. Furthermore, it could be recovered magnetically and recycled three times. Although activity loss was observed in the recycle experiments, it could be reactivated by dispersing in a fresh modifier solution. 相似文献
14.
An efficient and practical route to β‐keto sulfones has been developed through heterogeneous oxidative coupling of oxime acetates with sodium sulfinates by using an MCM‐41‐supported Schiff base‐pyridine bidentate copper (II) complex [MCM‐41‐Sb,Py‐Cu (OAc)2] as the catalyst and oxime acetates as an internal oxidant, followed by hydrolysis. The reaction generates a variety of β‐keto sulfones in good to excellent yields. This new heterogeneous copper (II) catalyst can be easily prepared via a simple procedure from readily available and inexpensive reagents and exhibits the same catalytic activity as Cu (OAc)2. MCM‐41‐Sb,Py‐Cu (OAc)2 is also easy to recover and is recyclable up to eight times with almost consistent activity. 相似文献
15.
Shuying Zhang Jiaomei Wang Xiangxue Liu Ke Wang Chao Zhang Hongbing Song Zhenmei Guo Zhiguo Lv 《应用有机金属化学》2020,34(11):e5915
Herein a novel homogeneous catalysis-liquid/liquid separation catalytic system based on 1, 8-diazabicyclo-[5.4.0] undec-7-ene (DBU)-functionalized, 1, 1, 3, 3-tetramethyl guanidine-functionalized and imidazolium-functionalized bibasic sites ionic liquids (BSILs) ([HDBU]IM, [Aemim]IM, [TMG]IM, [Aemim]Pro, [Aemim]Gly, [HDBU]Pro and [HDBU]Gly) with a room temperature liquid/liquid phase transition characteristic were reported. And for the first time, this novel catalytic system was employed for the synthesis of 2, 2, 4-trimethyl-1, 3-pentaerediol monoisobutyrate (CS-12), achieving homogeneous catalysis, easy recycling and long service-life of the catalyst. Additionally, the mechanism of homogeneous catalysis-biphasic separation might be explained by the solubility of reactant and product in BSILs/H2O catalytic system and the existence H-bonding between BSILs and H2O. Bibasic sites were confirmed by two endothermic peaks on the TG-DCS curve of [Aemim]IMC (the CO2 captured by [Aemim]IM). 相似文献
16.
Zakaria Benzekri Houda Serrar Sara Sibous Ali Ouasri Ali Rhandour 《Green Chemistry Letters and Reviews》2016,9(4):223-228
An easy synthetic protocol for the synthesis of biologically active benzimidazole, benzothiazole and benzoxazole derivatives has been demonstrated using a hybrid crystal NH3(CH2)4NH3SiF6 as a mild and efficient heterogeneous catalyst. Short reaction times, solvent-free conditions, good to excellent yields, easy reusability and use of an eco-friendly catalyst are some of the significant attributes of the present method. 相似文献
17.
In this work, we reported one-step deposition of polyacrylamide on nano-magnetite surface via a simple and in situ polymerization of acryl amide to form n-Fe3O4/PAM nanocomposite. The amide (–CONH2) groups could be converted easily to amine (–NH2) groups through Hofmann degradation to introduce n-Fe3O4/PVAm as a highly efficient heterogeneous base catalyst. The obtained organic-inorganic nanocomposite exhibited high catalytic activity for the solvent-free syntheses of various dihydropyrano[2,3-c]pyrazole derivatives and the Knoevenagel condensation in high to excellent yields and in the following, a plausible mechanism for the synthesis of them has been proposed. Because of the polymer layer coated Fe3O4 nanoparticles, the catalyst has many catalytic units, and acceptable thermal stability and recyclability. Titration, FT-IR, SEM, TGA, VSM, and XRD analysis were used for characterization of the catalyst. Also, the nanocomposite can be easily recovered by a magnetic field and reused up to 9 times without distinct deterioration in catalytic activity. 相似文献
18.
A facile and rapid method for the one-pot synthesis of 5,5-disubstituted hydantoins in the presence of magnetic Fe3O4 nanoparticles has been developed. The multicomponent reactions of carbonyl compounds (aldehydes and ketones), potassium cyanide and ammonium carbonate were carried out under solvent-free conditions to obtain various hydantoin derivatives. The magnetic catalyst could be readily separated by an external magnet from the reaction mixture. This procedure has many advantages, such as the use of a reusable magnetic catalyst, high yields, short reaction times, simplicity and very easiness with implementing the methodology. 相似文献
19.
Fe(HSO4)3 has been used as an efficient and reeyclable catalyst for the one-pot synthesis of 14-aryl- or alkyl-14H-dibenzo[a,j]xanthene derivatives by the reaction of 2-naphtol and aldehydes. Different types of aromatic and aliphatic aldehydes are used in the reaction and in all cases the products were obtained in good to excellent yields. 相似文献
20.
In this paper all efforts have been devoted to develop stabilized tannic acid-SO3H on Fe3O4@SiO2 nanoparticles as the new magnetically and eco-friendly nanocatalyst. This nanocatalyst was identified using different techniques such as fourier transform infrared (FT-IR), Powder X-ray diffraction (XRD), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDXS) and thermogravimetric analysis (TGA). Catalytic performance of the catalyst in cyclocondensation reaction of anthranilamide with different aldehydes under the friendly environmentally reaction condition led to formation corresponding 2,3-dihydro-4(1H)-quinazolinones compounds in excellent yields. The catalyst could be easily recovered by an external magnet and reused 4 times without significant loss of catalytic activity. 相似文献