首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In response to specific stimuli, dynamic covalent materials enable the generation of new structures by reversibly forming/breaking chemical bonds, thus showing great potential for application in controlled drug release. However, using dynamic covalent chemistry to program drug-delivery kinetics remains challenging. Herein, an in situ polymerization-generated DNA-scaffolded disulfide redox network (DdiSRN) is reported in which nucleic acids are used as a scaffold for dynamic disulfide bonds. The constructed DdiSRN allows selective release of loading cargos inside cancer cells in response to redox stimuli. Moreover, the density of disulfide bonds in network can be tuned by precise control over their position and number on DNA scaffolds. As a result, drug-delivery kinetics can be programmed with a half-life, t1/2, decreasing from 8.3 to 4.4 h, thus facilitating keeping an adequate drug concentration within the therapeutic window. Both in vitro and in vivo studies confirm that co-delivery of DOX and siRNA in combination with fast drug release inside cells using this DdiSRN enhances the therapeutic effect on multidrug-resistant cancer. This nontrivial therapeutic platform enabling kinetic control provides a good paradigm for precision cancer medicine.  相似文献   

2.
Drug delivery systems (DDSs) are designed to deliver therapeutic agents to specific target sites while minimizing systemic toxicity. Recent developments in drug-loaded DDSs have demonstrated promising characteristics and paved new pathways for cancer treatment. Light, a prevalent external stimulus, is widely utilized to trigger drug release. However, conventional light sources primarily concentrate on the ultraviolet (UV) and visible light regions, which suffer from limited biological tissue penetration. This limitation hinders applications for deep-tissue tumor drug release. Given their deep tissue penetration and well-established application technology, X-rays have recently received attention for the pursuit of controlled drug release. With precise spatiotemporal and dosage controllability, X-rays stand as an ideal stimulus for achieving controlled drug release in deep-tissue cancer therapy. This article explores the recent advancements in using X-rays for stimulus-triggered drug release in DDSs and delves into their action mechanisms.  相似文献   

3.
Dynamic covalent bonds are extensively employed in dynamic combinatorial chemistry. The metathesis reaction of disulfide bonds is widely used, but requires catalysis or irradiation with ultraviolet (UV) light. It was found that diselenide bonds are dynamic covalent bonds and undergo dynamic exchange reactions under mild conditions for diselenide metathesis. This reaction is induced by irradiation with visible light and stops in the dark. The exchange is assumed to proceed through a radical mechanism, and experiments with 2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO) support this assumption. Furthermore, the reaction can be conducted in different solvents, including protic solvents. Diselenide metathesis can also be used to synthesize diselenide‐containing asymmetric block copolymers. This work thus entails the use of diselenide bonds as dynamic covalent bonds, the development of a dynamic exchange reaction under mild conditions, and an extension of selenium‐related dynamic chemistry.  相似文献   

4.
The stimulator of interferon genes(STING) shows promising clinical activity in infectious diseases and tumors.However,the lack of targeting capability and intracellular stability of STING agonists severely limits the therapeutic efficacy.Recently,drug delivery systems(DDSs) overcome these delivery barriers of STING agonists via passive or active cell targeting,prolonged blood circulation and drug release,and lysosome escape,etc.In this review,we will describe in detail how existing DDSs are designed to overcome delivery barriers and activate the STING pathway,and the current biomedical applications of STING-activating DDSs in the treatments of infectious diseases and tumors.Finally,the prospects and challenges of DDSs in STING activation are discussed.  相似文献   

5.
陈蕾  李剑峰  邵立东  赵庆  黄章杰 《化学通报》2021,84(11):1141-1149
石墨烯是碳材料家族新兴成员之一,因其具有化学性质稳定、良好生物兼容性、催化性、零带隙、特殊的电子能带等特点而受到科学家们广泛关注。 石墨烯特殊的六元环基底平面对很多分子、离子具有亲和性,可通过非共价键或共价键将目标物质富集于表面,大多数情况下被吸附的物质在特定条件下易解吸且不会引起其结构和性质的改变。 石墨烯因而在生物成像、生物医学、光催化、生物传感、药物载体和释放、 环境等方面应用前景广阔。 本文主要论述石墨烯和它的衍生物在生命大分子( 蛋白质和核酸) 分析化学方面的应用,并展望了其发展趋势。  相似文献   

6.
Mechanically interlocked molecules have found extensive applications in areas all across the physical sciences, from materials to catalysis and sensing. However, introducing mechanical bonds and entanglements at the molecular level is still a significant challenge due to the inherent restriction in entropy needed to preorganize strands before interlocking. Over the last decade, dynamic covalent chemistry has emerged as one of the most efficient methods of forming rotaxanes, catenanes and molecular knots. By using reversible bonds such as imines, disulfides and boronate esters, one can use the inherent error-correction in these linkages to form interlocked architectures with high fidelity and often in excellent yields. This review reports on recent advances in the use of dynamic covalent chemistry to make mechanically interlocked molecules, systematically surveying clipping, capping and templating approaches with dynamic bonds. Furthermore, it is also discussed how dynamic bonds can be used to control motion, co-conformational expression and catalytic activity in mechanically interlocked molecular machinery.  相似文献   

7.
Multicomponent surface architectures are introduced that operate with three different dynamic covalent bonds. Disulfide exchange under basic conditions accounts for the growth of π stacks on solid surfaces. Hydrazone exchange under acidic conditions is used to add a second coaxial string or stack, and boronic ester exchange under neutral conditions is used to co‐align a third one. The newly introduced boronic ester exchange chemistry is compatible with stack and string exchange without interference from the orthogonal hydrazone and disulfide exchange. The functional relevance of surface architectures with three different dynamic covalent bonds is exemplified with the detection of polyphenol natural products, such as epigallocatechin gallate, in competition experiments with alizarin red. These results describe synthetic strategies to create functional systems of unprecedented sophistication with regard to dynamic covalent chemistry.  相似文献   

8.
多肽具有生物相容性好,功能多样化,生物体内响应性高及合成修饰方法简单易行等优点,已被广泛用于构建靶向药物传递系统。以具有靶向功能和刺激响应性的多肽为基础构建的药物传递系统,能够将药物定向地运送到肿瘤区域。药物传递系统到达肿瘤组织后,在肿瘤组织特殊微环境或外源刺激下,实现药物的精准释放。这种具有特异性肿瘤靶向和刺激响应型的多肽载体可以最大程度地提高药物的抗肿瘤效果,降低药物的毒副作用。本文简要介绍了常用的靶向多肽和刺激响应型多肽,并讨论了基于功能型多肽的药物载体在肿瘤治疗方面的应用。  相似文献   

9.
This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer‐based materials that are responsive to external stimuli. It will be discussed how the inherent dynamic nature of the dynamic covalent bonds on the molecular level can be translated to the macroscopic level of the polymer, giving access to a range of applications, such as stimuli‐responsive or self‐healing materials. A primary distinction will be made based on the type of dynamic covalent bond employed, while a secondary distinction will be based on the consideration whether the dynamic covalent bond is used in the main chain of the polymer or whether it is used to allow side chain modification of the polymer. Emphasis will be on the chemistry of the dynamic covalent bonds present in the polymer, in particular in relation to how the specific (dynamic) features of the bond impart functionality to the polymer material, and to the conditions under which this dynamic behavior is manifested. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3551–3577.  相似文献   

10.
In the past decades, nanosized drug delivery systems (DDS) have been extensively developed and studied as a promising way to improve the performance of a drug and reduce its undesirable side effects. DDSs are usually very complex supramolecular assemblies made of a core that contains the active substance(s) and ensures a controlled release, which is surrounded by a corona that stabilizes the particles and ensures the delivery to the targeted cells. To optimize the design of engineered DDSs, it is essential to gain a comprehensive understanding of these core–shell assemblies at the atomic level. In this review, we illustrate how solid-state nuclear magnetic resonance (ssNMR) spectroscopy has become an essential tool in DDS design.  相似文献   

11.
Supramolecular chemistry puts emphasis on molecular assemblies held together by non-covalent bonds. As such, it is very close in spirit to colloid science which also focuses on objects which are small, but beyond the molecular scale, and for which other forces than covalent bonds are crucial. We discuss in this review the preparation and properties of new colloidal systems which borrow on the one hand from classical topics in colloid science, such as micellization, and on the other hand from concepts in supramolecular chemistry, such as reversible supramolecular polymers.  相似文献   

12.
Bottom-up approach to constructing low-dimensional nanostructures on surfaces with terminal alkynes has drawn great interest because of its potential applications in fabricating advanced functional nanomaterials. The diversity of the achieved products manifests rich chemistry of terminal alkynes and hence careful linking strategies and proper controlling methodologies are required for selective preparations of high-quality target nanoarchitectures. This review summarizes various on-surface linking strategies for terminal alkynes, including non-bonding interactions as well as organometallic and covalent bonds, and presents examples to show effective control of surface assemblies and reactions of terminal alkynes by variations of the precursor structures, substrates and activation modes. Systematic studies of the on-surface linkage of terminal alkynes may help efficient and predictable preparations of surface nanomaterials and further understanding of surface chemistry.  相似文献   

13.
Fragment-based drug discovery (FBDD) has become an established approach for the generation of early lead candidates. However, despite its success and inherent advantages, hit-to-candidate progression for FBDD is not necessarily faster than that of traditional high-throughput screening. Thus, new technology-driven library design strategies have emerged as a means to facilitate more efficient fragment screening and/or subsequent fragment-to-hit chemistry. This minireview discusses such strategies, which cover the use of labeled fragments for NMR spectroscopy, X-ray crystallographic screening of specialized fragments, covalent linkage for mass spectrometry, dynamic combinatorial chemistry, and fragments optimized for easy elaboration.  相似文献   

14.
One area of supramolecular chemistry involves the synthesis of discrete three‐dimensional molecules or supramolecular aggregates through the coordination of metals. This field also concerns the chemistry of supramolecular cage compounds constructed through the use of such coordination bonds. To date, there exists a broad variety of supramolecular cage compounds; however, analogous organic cage compounds formed with only covalent bonds are relatively rare. Recent progress in this field can be attributed to important advances, not least the application of dynamic covalent chemistry. This concept makes it possible to start from readily available precursors, and in general allows the synthesis of cage compounds in fewer steps and usually higher yields.  相似文献   

15.
Dynamic covalent chemistry relates to chemical reactions carried out reversibly under conditions of equilibrium control. The reversible nature of the reactions introduces the prospects of "error checking" and "proof-reading" into synthetic processes where dynamic covalent chemistry operates. Since the formation of products occurs under thermodynamic control, product distributions depend only on the relative stabilities of the final products. In kinetically controlled reactions, however, it is the free energy differences between the transition states leading to the products that determines their relative proportions. Supramolecular chemistry has had a huge impact on synthesis at two levels: one is noncovalent synthesis, or strict self-assembly, and the other is supramolecular assistance to molecular synthesis, also referred to as self-assembly followed by covalent modification. Noncovalent synthesis has given us access to finite supermolecules and infinite supramolecular arrays. Supramolecular assistance to covalent synthesis has been exploited in the construction of more-complex systems, such as interlocked molecular compounds (for example, catenanes and rotaxanes) as well as container molecules (molecular capsules). The appealing prospect of also synthesizing these types of compounds with complex molecular architectures using reversible covalent bond forming chemistry has led to the development of dynamic covalent chemistry. Historically, dynamic covalent chemistry has played a central role in the development of conformational analysis by opening up the possibility to be able to equilibrate configurational isomers, sometimes with base (for example, esters) and sometimes with acid (for example, acetals). These stereochemical "balancing acts" revealed another major advantage that dynamic covalent chemistry offers the chemist, which is not so easily accessible in the kinetically controlled regime: the ability to re-adjust the product distribution of a reaction, even once the initial products have been formed, by changing the reaction's environment (for example, concentration, temperature, presence or absence of a template). This highly transparent, yet tremendously subtle, characteristic of dynamic covalent chemistry has led to key discoveries in polymer chemistry. In this review, some recent examples where dynamic covalent chemistry has been demonstrated are shown to emphasise the basic concepts of this area of science.  相似文献   

16.
李永三  徐艳双  陶磊  危岩 《高分子学报》2020,(1):30-38,I0002
自愈性水凝胶作为一种新型仿生智能材料受到了科研人员的广泛关注.近年来,人们利用动态共价键、超分子作用,发展了一系列自愈性水凝胶,并将其应用于药物控释、细胞三维培养、组织工程等生物医用领域.本文总结和评述了基于动态共价键的自愈性水凝胶及这些水凝胶作为药物载体的相关研究,并展望了基于动态化学的自愈性水凝胶的未来发展.  相似文献   

17.
A novel injectable in situ gelling drug delivery system (DDS) consisting of biodegradable N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) nanoparticles and thermosensitive chitosan/gelatin blend hydrogels was developed for prolonged and sustained controlled drug release. Four different HTCC nanoparticles, prepared based on ionic process of HTCC and oppositely charged molecules such as sodium tripolyphosphate, sodium alginate and carboxymethyl chitosan, were incorporated physically into thermosensitive chitosan/gelatin blend solutions to form the novel DDSs. Resulting DDSs interior morphology was evaluated by scanning electron microscopy. The effect of nanoparticles composition on both the gel process and the gel strength was investigated from which possible hydrogel formation mechanisms were inferred. Finally, bovine serum albumin (BSA), used as a model protein drug, was loaded into four different HTCC nanoparticles to examine and compare the effects of controlled release of these novel DDSs. The results showed that BSA could be sustained and released from these novel DDSs and the release rate was affected by the properties of nanoparticle: the slower BSA release rate was observed from DDS containing nanoparticles with a positive charge than with a negative charge. The described injectable drug delivery systems might have great potential application for local and sustained delivery of protein drugs.  相似文献   

18.
Molecular container compounds have a range of potential applications in chemical and biological sciences, most notably as nanoreactors, drug delivery devices, and storage materials. We report a highly efficient dynamic covalent chemistry approach for the synthesis of covalent rhombicuboctahedral nanocapsule 1 from 14 square- and triangular-shaped molecular components. The nanocapsule is obtained in a one-pot reaction in high yield and high purity, and has a solvodynamic diameter of 3.9 nm. In our approach, six formyl cavitands and eight 1,3,5-tris(p-aminophenyl)benzene molecules are assembled into a molecular rhombicuboctahedron through twenty four newly formed dynamic imine bonds. Binding studies show that 1 encapsulates tetraalkylammonium salts in toluene. We also discuss the growth mechanism of this nanocapsule.  相似文献   

19.
Self‐immolative spacers are covalent assemblies tailored to correlate the cleavage of two chemical bonds after activation of a protective part in a precursor: Upon stimulation, the protective moiety is removed, which generates a cascade of disassembling reactions leading to the temporally sequential release of smaller molecules. Originally introduced to overcome limitations for drug delivery, self‐immolative spacers have gained wide interest in medicinal chemistry, analytical chemistry, and material science. For most applications, the kinetics of the disassembly of the activated self‐immolative spacer governs functional properties. This Review addresses kinetic aspects of self‐immolation. It provides information for selecting a particular self‐immolative motif for a specific demand. Moreover, it should help researchers design kinetic experiments and fully exploit the rich perspectives of self‐immolative spacers.  相似文献   

20.
Dynamic covalent chemistry has emerged recently to be a powerful tool to construct functional materials. This article reviews the progress in the research and development of dynamic covalent chemistry in gels assembled from small molecules. First dynamic covalent reactions used in gels are reviewed to understand the dynamic covalent bonding. Afterwards the catalogues of dynamic covalent gels are reviewed according to the nature of gelators and the interactions between gelators. Dynamic covalent bonding can be involved to form low molecular weight gelators. Low molecular weight molecules with multiple functional groups react to form dynamic covalent cross-linked polymers and act as gelators. Two catalogues of gels show different properties arising from their different structures. This review aims to illustrate the structure-property relationships of these dynamic covalent gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号