首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Agnieszka Lacz 《Ionics》2016,22(8):1405-1414
Y-doped barium cerate BaCe0.9Y0.1O3???δ was synthesised by a solid-state reaction method. Materials with different average grain sizes and grain boundary surface areas were obtained. The effect of microstructure on the chemical stability in the CO2 and H2O-containing atmosphere and electrical properties was analysed and discussed. To evaluate the chemical stability of BaCe0.9Y0.1O3???δ , the exposure test was performed. Samples were exposed to the carbon dioxide and water vapour-rich atmosphere at 25 °C for 700 h. Thermogravimetry supplied by mass spectrometry was applied to analyse the samples before and after this comprehensive test. The mass loss for samples before and after the test and the amount of BaCO3 formed during the test were directly treated as the measure of chemical instability of BaCe0.9Y0.1O3???δ in the atmosphere rich in carbon dioxide and water vapour. As it was observed, the BaCe0.9Y0.1O3???δ chemical stability towards CO2 and H2O is not affected by the materials’ microstructure. Electrical properties of BaCe0.9Y0.1O3???δ which differs with microstructure were determined using electrochemical impedance spectroscopy (EIS). It was found that the grain interior resistivity and activation energy of grain interior conductivity is microstructure independent. However, the effect on microstructure was seen on the EIS spectra in the range of grain boundary contribution. Therefore, the lowest activation energy and the highest conductivity were observed for a material with the lowest grain boundary surface area.  相似文献   

2.
The across-plane electrical conductivity of the proton-conducting SrZr0.95Y0.05O3???δ thin films fabricated by chemical solution deposition on single-crystalline ZrO2 doped by 10 mol% of Y2O3 (YSZ) substrates was investigated using impedance spectroscopy. The average grain size of the films was found to increase considerably with thermal treatment. This change in grain size has a strong effect on the electrical behavior of films. Our results show that the electrochemical performance of the cell is strongly affected by the potential difference at the film/substrate interface. Coarse-grain film microstructure was proved to be preferable for the reduction of both the film resistance and interfacial barrier.  相似文献   

3.
《Solid State Ionics》2006,177(26-32):2333-2337
Pulsed laser deposition has been used to fabricate nanostructured BaCe0.85Y0.15O3−δ films. Protonic conduction of the fabricated BaCe0.85Y0.15O3−δ films was compared to the sintered BaCe0.85Y0.15O3−δ. Sintered samples and laser targets were prepared by sintering BaCe0.85Y0.15O3−δ powders derived by solid state synthesis. Films 1 to 8 μm thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 °C at O2 pressures up to 200 mTorr using laser pulse energy densities of 1.4–3 J/cm2. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe0.85Y0.15O3−δ films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 to 900 °C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 °C; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied from 115 to 54 kJ. Film microstructure was attributed to the difference in electrical conductivity of the BaCe0.85Y0.15O3−δ films.  相似文献   

4.
Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 content have been prepared on BK7 substrates by electron-beam evaporation method. Structural properties and surface morphology of thin films were investigated by X-ray diffraction (XRD) spectra and scanning probe microscope. Laser induced damage threshold (LIDT) was determined. It was found that crystalline phase and microstructure of YSZ thin films was dependent on Y2O3 molar content. YSZ thin films changed from monoclinic phase to high temperature phase (tetragonal and cubic) with the increase of Y2O3 content. The LIDT of stabilized thin film is more than that of unstabilized thin films. The reason is that ZrO2 material undergoes phase transition during the course of e-beam evaporation resulting in more numbers of defects compared to that of YSZ thin films. These defects act as absorptive center and the original breakdown points.  相似文献   

5.
Y1?xHoxBa2Cu3O7?δ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) thin films were prepared on LaAlO3 (0 0 1) substrates by trifluoroacetate metal organic deposition (TFA-MOD) without change of the processing parameters. The highest Jc was attributed to the sample of Y0.6Ho0.4Ba2Cu3O7?δ thin film, whose critical current density is about 1.6 times as compared to that of YBa2Cu3O7?δ thin film at 77 K and self field. The flux pinning type was not varied with Ho substitution and can be attributed to δl pinning model, which is attributed to the close ionic radius between the Y3+ and Ho3+ ions. The improvement of Jc by Ho substitution without change of the processing parameters will provide an effective route to enhance the Jc of YBCO-based thin films using TFA-MOD method.  相似文献   

6.
Li Zhao  Wenyi Tan  Qin Zhong 《Ionics》2013,19(12):1745-1750
A series of BaCe0.8???x Zr x Y0.2O3???δ (BCZYx) (x?=?0, 0.2, 0.4, 0.6, 0.8) powders were prepared by EDTA–citrate complexing sol–gel process in this paper. The electrical conducting behavior, as well as chemical stability, was investigated. X-ray diffraction (XRD) results reveal that all samples are homogenous perovskite phases. Observed from XRD patterns and thermogravimetric curves, the samples with x?≥?0.4 survive in the pure CO2, while samples with various Zr contents all present structurally stable against steam at 800 °C. The Zr-free sample of BaCe0.8Y0.2O3???δ possesses the maximum bulk conductivity, 4.25?×?10?2 S/cm, but decomposes into Ba(OH)2 and Ce0.8Y0.2O3???δ in steam. A negative influence of increasing Zr content on the conductivity of BCZYx can be observed by impedance tests. Considering the effect of temperature on the bulk conductivity, BCZY0.4 is preferred to be applied in SOFC as a protonic conductor, ranging from 1.52?×?10?4 to 1.51?×?10?3 S/cm (500–850 °C) with E a?=?0.859 eV, which is proved to be a good protonic conductor with t H+?≥?0.9.  相似文献   

7.
Amorphous hafnium silicate, a-Hf0.1Si0.9Ox, thin film with thickness of 32, 41, 55, 80, 110, 120, 180 and 320 nm was prepared by multiple spin-cast process and the proton conductivity across the films was measured at intermediate temperatures (100-400 °C) in dry atmosphere. The morphologically- and compositionally-uniform films were prepared on a substrate as confirmed by SEM, RBS and XPS measurements. a-Hf0.1Si0.9Ox thin film clearly revealed the H/D isotope effect on ionic conductivity, indicating that protonic conduction is dominant in the measured temperature range. The films did not reveal thickness-dependent proton conductivity in dry air and the σ at given temperatures is almost constant at any thickness. No increment of σ in a-Hf0.1Si0.9Ox thin films by reduction of thickness might be related to the absence of the highly-conductive acid network with mesoscopically-sized length because of the relatively low concentration of Brønsted acid sites inside films.  相似文献   

8.
Meng He 《Applied Surface Science》2007,253(14):6080-6084
La0.9Sr0.1MnO3 (LSMO) ultrathin films with various thickness (in the range of 5-50 unit cells) are grown on (0 0 1) substrates of the single-crystal SrTi0.99Nb0.01O3 by laser molecular-beam epitaxy (laser-MBE), and the surface morphology of these films were measured by scanning tunneling microscopy (STM). STM images of LSMO ultrathin film surface reveal that surface morphology becomes more flat with increasing film thickness. This study highlights the important effect of strain caused by the lattice mismatch between substrates and ultrathin films. And the results should be useful to the investigations on growing manganite perovskite materials.  相似文献   

9.
Bismuth- and yttrium-co-doped barium cerates were successfully synthesised by solid-state reactions followed by sintering between 1,400 and 1,500 °C for 1 to 6 h allowing densification above 98 % to be obtained. All samples were found to retain their original orthorhombic structure after treatment in either oxidising or reducing atmospheres (dry and wet). Mechanical strength was affected by structure upon reduction due in part to strains and stresses induced by bismuth ionic size variations. Conductivity values as high as 0.055 S/cm were obtained for sample BaCe0.6Zr0.1Y0.1Bi0.2O3?δ and of 0.0094 S/cm for the Zr-free compound BaCe0.7Y0.2Bi0.1O3?δ at 700 °C in air. In all the investigated materials, sample BaCe0.6Zr0.1Y0.1Bi0.2O3?δ exhibits the highest conductivity in both air and wet 5 % H2/Ar with good mechanical strength. BaCe0.6Zr0.1Y0.1Bi0.2O3?δ is a promising mixed H+/e? conductor, a potential component of composite anode for solid oxide fuel cells.  相似文献   

10.
Undoped ZnO and Zn0.9Cr0.1O films were prepared on Al2O3 (0 0 0 1) substrates using the magnetron co-sputtering technique. X-ray diffraction scans show that all films exhibit nearly single-phase wurtzite structure with c-axis orientation. Both chromium doping and growth ambient have a significant impact on the lattice constants and nucleation processes in ZnO film. A large quantity of subgrains (10 nm in size) has been observed on Zn0.9Cr0.1O film grown under Ar + O2, while irregular plateau-like grains 40-50 nm in size were observed on Zn0.9Cr0.1O film grown under Ar + N2. The ultraviolet-visible transmittance and optical bandgap of all films were also examined. The photoluminescence spectra of all films exhibit a broad emission located around 400 nm, which is composed of one weak ultraviolet luminescence and another rather intense near-violet one, as determined by Gaussian peak fitting. The near-violet emission centered on 400 nm might originate from the electron transition between the band tail state levels of surface defects and/or lattice imperfection in the ZnO film.  相似文献   

11.
Effects of the BiFe0.95Mn0.05O3 thickness and a SrRuO3 (SRO) buffer layer on the microstructure and electrical properties of BiFeO3/BiFe0.95Mn0.05O3 (BFO/BFMO) bilayered thin films were investigated, where BFO/BFMO bilayered thin films were fabricated on the SRO/Pt/Ti/SiO2/Si(100) substrate by a radio frequency sputtering. All thin films are of a pure perovskite structure with a mixture of (110) and (111) orientations regardless of the BFMO layer thickness. Dense microstructure is demonstrated in all thin films because of the introduction of BFMO layers. The SRO buffer layer can also further improve the ferroelectric properties of BFO/BFMO bilayered thin films as compared with those of these thin films without a SRO buffer layer. The BFO/BFMO bilayered thin film with a thickness ratio of 220/120 has an enhanced ferroelectric behavior of 2P r??165.23???C/cm2 and 2E c??518.56?kV/cm, together with a good fatigue endurance. Therefore, it is an effective way to enhance the ferroelectric and fatigue properties of bismuth ferrite thin films by constructing such a bilayered structure and using a SRO buffer layer.  相似文献   

12.
A c-axis orientated aluminium nitride (AlN) film on a 128° Y-X lithium niobate (LiNbO3) surface acoustic wave (SAW) device which exhibit a large electromechanical coupling coefficient (k2) and a high SAW velocity property, is needed for future communication applications. In this study, a c-axis orientated (B, Al)N film (with 2.6 at.% boron) was deposited on a 128° Y-X LiNbO3 substrate by a co-sputtering system to further boost SAW device properties. The XRD and TEM results show that the (B, Al)N films show highly aligned columns with the c-axis perpendicular to the substrate. The hardness and Young's modulus of (B, Al)N film on 128° Y-X LiNbO3 substrates are at least 17% and 7% larger than AlN films, respectively. From the SAW device measurement, the operation frequency characteristic of (B, Al)N film on 128° Y-X LiNbO3 is higher than pure AlN on it. The SAW velocity also increases as (B, Al)N film thickness increases (at fixed IDT wavelength). Furthermore, the k2 of (B, Al)N on the IDT/128° Y-X LiNbO3 SAW device shows a higher value than AlN on it.  相似文献   

13.
《Solid State Ionics》2006,177(19-25):1733-1736
Thin films of La1.61GeO5−δ, a new oxide ionic conductor, were fabricated on dense polycrystalline Al2O3 substrates by a pulsed laser deposition (PLD) method and the effect of the film thickness on the oxide ionic conductivity was investigated on the nanoscale. The deposition parameters were optimized to obtain La1.61GeO5−δ thin films with stoichiometric composition. Annealing was found necessary to get crystalline La1.61GeO5−δ thin films. It was also found that the annealed La1.61GeO5−δ film exhibited extraordinarily high oxide ionic conductivity. Due to the nano-size effects, the oxide ion conductivity of La1.61GeO5−δ thin films increased with the decreasing thickness as compared to that in bulk La1.61GeO5−δ. In particular, the improvement in conductivity of the film at low temperature was significant .The electrical conductivity of the La1.61GeO5−δ film with a thickness of 373 nm is as high as 0.05 S cm 1 (log(σ/S cm 1) =  1.3) at 573 K.  相似文献   

14.
Y1.9−xLi0.1EuxO3 (x=0.02, 0.05, 0.08, and 0.12) films were fabricated by spin-coating method. A colloidal silica suspension with Y1.9−xLi0.1EuxO3 phosphor powder was exploited to obtain the highly stable and effective luminescent films onto the glass substrate. After heating as-prepared Y1.9−xLi0.1EuxO3 films at 700 °C for 1 h, the phosphor films exhibit a high luminescent brightness as well as a strong adhesiveness on the glass substrate. The emission spectra of spin-coated and pulse-laser deposited Y1.82Li0.1Eu0.08O3 films were compared. The cathodoluminescence of the phosphor films was carried out at the anode voltage 1 kV.  相似文献   

15.
The synthesis of Y0.9Er0.1Al3(BO3)4 crystalline powders and vitreous thin films were studied. Precursor solutions were obtained using a modified polymeric precursor method using d-sorbitol as complexant agent. The chemical reactions were described. Y0.9Er0.1Al3(BO3)4 composition presents good thermal stability with regard to crystallization. The Y0.9Er0.1Al3(BO3)4 crystallized phase can be obtained at 1,150 °C, in agreement with other authors. Crack- and porosity-free films were obtained with very small grain size and low RMS roughness. The films thickness revealed to be linearly dependent on precursor solution viscosity, being the value of 25 mPa s useful to prepare high-quality amorphous multi-layers (up to ∼ 800 nm) at 740 °C during 2 h onto silica substrates by spin coating with a gyrset technology.  相似文献   

16.
A composite material (hereafter referred to as NYC) containing Ni, Y2O3-stabilized ZrO2 (YSZ) and Ce0.9Ca0.1O2−δ (CC10) particles was prepared and used as the anode of solid oxide fuel cells (SOFCs). The performance of NYC was better than that of conventional Ni/YSZ anodes in terms of anodic overpotential and interface impedance. The additional CC10 particles improved the anode properties. XRD results suggest that a solid solution of YSZ and CC10 was produced. From impedance measurements, it is concluded that the solid solution exhibits substantial electronic conduction. Ni/YSZ/15 wt% Ce0.9Ca0.1O2−δ anodes exhibited the best properties over the experimental temperature range. A SOFC with an anode of Ni/YSZ/15 wt% Ce0.9Ca0.1O2−δ provided the maximum power density and current density. Addition of CC10 with an average particle size of 0.3 μm was more advantageous than that with an average size of 3 μm.  相似文献   

17.
Bi4???x M x V2O11???δ (M?=?La, Gd; 0.1?≤?x?≤?0.3) is synthesised by a solid state reaction method to study the effect of La3+ and Gd3+ substitution for Bi on the structural and optical properties. The as-prepared samples are characterised by X-ray diffraction, Fourier transform infrared analysis, UV–visible spectroscopy, scanning electron microscopy and energy-dispersive spectroscopy. The refinement results confirmed that even substituted samples exhibit monoclinic structure with space group C2/m. The parameters like band gap energy; Urbach energy has been calculated from the UV–visible spectra. It has been observed that even substitution at the bismuth site by isovalent cations decreases the energy band gap. The lowest observed band gap is 1.86 eV for Bi3.9La0.1V2O11???δ . The grain size and defects were observed to increase with increasing substitution along with the amount of secondary phase.  相似文献   

18.
BaZr0.1Ti0.9O3 and BaZr0.2Ti0.8O3 (BZT) thin films were deposited on Pt/Ti/LaAlO3 (1 0 0) substrates by radio-frequency magnetron sputtering, respectively. The films were further annealed at 800 °C for 30 min in oxygen. X-ray diffraction θ-2θ and Φ-scans showed that BaZr0.1Ti0.9O3 films displayed a highly (h 0 0) preferred orientation and a good cube-on-cube epitaxial growth on the LaAlO3 (1 0 0) substrate, while there are no obvious preferential orientation in BaZr0.2Ti0.8O3 thin films. The BaZr0.1Ti0.9O3 films possess larger grain size, higher dielectric constant, larger tunability, larger remanent polarization and coercive electric field than that of BaZr0.2Ti0.8O3 films. Whereas, BaZr0.1Ti0.9O3 films have larger dielectric losses and leakage current density. The results suggest that Zr4+ ion can decrease dielectric constant and restrain non-linearity. Moreover, the enhancement in dielectric properties of BaZr0.1Ti0.9O3 films may be attributed to (1 0 0) preferred orientation.  相似文献   

19.
The dip-coating method has been successfully used for depositing porous electrodes of La0.4Sr0.6Co0.8Fe0.2O3-δ (LSCF) films. Perovskite oxide cobaltites powders have been prepared by an acetic acid-based gel route. Then, cathode films were deposited onto ceramic substrates of the usual electrolyte Cerium Gadolinium Oxide (CGO) by dip coating. The structure and morphology of the powders and films were characterized by X-ray, diffraction (XRD) and scanning electron microscopy (SEM) respectively, to study the correlation between microstructure and deposition parameters. Optimum parameters for obtaining continuous, homogeneous and crack free LSCF films were determined.  相似文献   

20.
A study has been made of the electrical resistivity ρ, magnetoresistance Δρ/ρ, and magnetization of La0.35Nd0.35Sr0.3MnO3 epitaxial films on ZrO2(Y2O3), SrTiO3, LaAlO3, and MgO substrates. The first film can exist in four equivalent crystallographic orientations in the sample plane, while the other three have only one orientation. The maxima of ρ and Δρ/ρ of the first film are broadened considerably in the vicinity of the Curie point T C compared to the three others, the magnitude of ρ itself being larger by 1.5 orders of magnitude, and a large negative magnetoresistance (|Δρ/ρ| ~ 10% in a field of 8.4 kOe) is observed at temperatures 80≤T≤200 K. In all films, the magnetic moment per molecule at 5 K is ~46% smaller than the pure spin value, due to the existence of magnetically disordered regions. The larger value of ρ of the film deposited on ZrO2(Y2O3) is due to the electrical resistance of the boundaries separating regions with different crystallographic orientations, and the magnetoresistance is associated with polarized carriers tunneling through the boundaries coinciding with domain walls. The low-temperature magnetoresistance in fields above technical saturation is caused by the strong p-d exchange coupling within spin-ordered regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号