首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a computational model coupling heat, water and salt ion transport, salt crystallization, deformation and damage in porous materials. We focus on crystallization-induced damage. The theory of poromechanics is employed to relate stress, induced by crystallization processes or hygro-thermal origin, to the material's mechanical response. A non-local formulation is developed to describe the crystallization kinetics. The model performance is illustrated by simulating the damage caused by sodium chloride crystallization in a porous limestone. The results are compared with experimental observations based on neutron and X-ray imaging. The simulation results suggest that the crystallization kinetics in porous materials have to be accurately understood in order to be able to control salt damage. The results show that the effective stress caused by salt crystallization depends not only on the crystallization pressure but also on the amount of salt crystals, which is determined by the spreading of crystals in the porous material and the crystallization kinetics.  相似文献   

2.
赵静  缪泓 《实验力学》2016,31(4):495-502
晶体在溶解及生长过程中边界层的信息直接影响晶体生长速度和物质输运过程,进而影响晶体质量和生长机制。本文利用相移干涉技术建立了晶体生长过程实时监测系统,对无机盐晶体溶解及生长过程中的边界层信息及物质输运过程进行了实时监测,获得了整个实验过程中的晶体生长速度。实验表明:在溶解过程中,边界层内浓度分布与晶体界面距离呈指数下降关系,边界层内浓度差与晶体溶解速度随时间呈指数减小关系;在结晶过程中,边界层内浓度分布规律与溶解过程相反;边界层内浓度差和晶体生长速度曲线则呈现出先上升再下降最后趋于稳定的规律,且在重力场和物质输运过程的共同作用下,晶体表面会产生浮力对流现象。  相似文献   

3.
Water and salts strongly influence the durability of porous materials. One of the most adverse phenomena which is related to the salt and moisture presence in the pore system of building materials is salt crystallization. The process is associated with the supersaturation ratio. The salt phase change kinetics is taken into account during the modeling of coupled moisture, salt, and heat transport. To solve the set of governing, differential equations the finite element and the finite difference methods are used. Three different rate laws are assumed in modeling the salt phase change. The drying, cooling, and warming of the cement mortar sample, during which the salt phase change occurs, have been simulated using the developed software. The changes of salt concentration in the pore solution and the amount of precipitated salt due to variation of boundary conditions are presented and discussed. The results obtained in the numerical simulation assuming the first, second, and fourth order rate low indicate that the higher order of the rate law the longer time delay between the change of boundary conditions and the salt precipitation. Such an analysis might be very useful during the determination of the material parameters by solving the inverse problem.  相似文献   

4.
ZSM-5 zeolites with a fibrous morphology were successfully self-assembled in the presence of sodium alginate. The effect of the sodium alginate concentration, Si/Al molar ratio in the synthesis gel, crystallization temperature and time, and the addition order of the sodium alginate on the morphology of the ZSM-5 zeolites was investigated. The possible formation mechanism of fibrous ZSM-5 zeolite crystals was also proposed. The results indicated that the carboxyl and hydroxyl groups of sodium alginate synergistically induced the self-stacking of ZSM-5 nanocrystals and thus the formation of the fibrous ZSM-5 zeolites. The Si/Al molar ratio of the fibrous ZSM-5 zeolites could be adjusted by controlling the amount of the NaAlO2 additive; however, high Si/Al molar ratios also hindered the self-stacking of ZSM-5 nanocrystals. A high crystallization temperature (180 °C), a moderate sodium alginate concentration (8.33 g/L), and the addition of sodium alginate prior to tetraethoxysilane were necessary for the formation of fibrous ZSM-5 zeolites.  相似文献   

5.
Potential high rates of aqueous dissolution are characteristic of salt rocks, and solute and mass flux through a soluble porous medium are functions of solute concentration gradients and pressure gradients. Due to different dissolution properties for different mineral components in glauberite salt rock, an interaction between mineral dissolution and solvent seepage arises, driven by the hydraulic pressure gradient in the rock. The originally almost impermeable glauberite rock becomes an increasingly permeable porous medium with dissolution, changing the transport and mechanical properties because of the progressive removal of solid sodium sulfate (Na2SO4), one of the constitutive components of glauberite salt rock. Glauberite is often found in bedded salt rock deposits, and the mineral glauberite has economic value and has been mined for many years in China. More economic and safe technologies, such as controlled solution mining, are inherently attractive. Thus, investigations into relevant physical and mechanical properties of glauberite in the context of solution mining have value, and to clarify glauberite behaviour, a series of experiments were performed. It is observed through experiments that the permeability of the rock mass during dissolution of glauberite is a function of the dissolution duration and the hydraulic pressure gradient applied to the system. For example, in laboratory tests, after 49, 53 and 70 h of dissolution, the relationships between permeability (k—cm2) and pressure gradient (Δp—MPa across the specimen of length 100 mm) of the glauberite specimens were observed to be k = 0.24 for a Δp of 0.10, k = 0.30 for a Δp of 0.12, and k = 0.41 for a Δp of 0.18, with the empirical functional relationship becoming gradually steeper with pressure. Also, the triaxial compression (mechanical) characteristics of glauberite salt rock change substantially after a period of dissolution: the compressive strength under a confining stress of σ3 = 2.0 MPa changes initially from 46 to 11 MPa after 70 h of dissolution and seepage. Along with strength degradation, the Young’s modulus (stiffness) changed from 4.6 to 0.5 GPa. Evidently, coupled dissolution and seepage rate greatly impact both transport and mechanical properties of the rock as fabric evolves in a time-dependent manner.  相似文献   

6.
With the outbreak of COVID-19, disinfection protection has become a necessary measure to prevent infection. As a new type of disinfectant, potassium peroxymonosulfate compound salt (PMS) has the advantages of good bactericidal effect, non-toxicity, high safety and stability. However, the current PMS products with irregular particle shapes lead to poor flowability, high hygroscopicity, poor stability of reactive oxygen species (ROS) and serious caking problems. In this work, an agglomeration-dissolution mechanism was designed to prepare spherical PMS particles with large size (>300 μm) and high sphericity (up to 90%), effectively addressing the above problems. Shaping (dissolution and abrasion) is the key to improving sphericity, which is mainly controlled by the design of the heating mode, residence time and stirring rate. Compared with the irregular PMS particles, the large spherical particles present better flowability (angle of repose decreased by 35.80%, Carr's index decreased by 64.29%, Hausner's ratio decreased by 19.14%), lower hygroscopicity (decreased by 38.0%), lower caking ratio (decreased by 84.50%), and higher stability (the monthly loss of ROS was reduced by 61.68%). The agglomeration-dissolution mechanism demonstrates the crystallization, agglomeration, dissolution and abrasion process of inorganic salt crystals, providing an opportunity to prepare high-end inorganic crystal materials with high-quality morphologies.  相似文献   

7.
Flow-through drying of ionic liquids in porous media can lead to super saturation and hence crystallization of salts. A model for the evolution of solid and liquid concentrations of salt, in porous media, due to evaporation by gas flow is presented. The model takes into account the impact of capillary-driven liquid film flow on the evaporation rates as well as the rate of transport of salt through those films. It is shown that at high capillary wicking numbers and high dimensionless pressure drops, supersaturation of brine takes place in the higher drying rate regions in the porous medium. This leads to solid salt crystallization and accumulation in the higher drying rate region. In the absence of wicking, there is no transport and accumulation of solid salt. Results from experiments of flow-through drying in rock cores are compared with model prediction of salt crystallization and accumulation.  相似文献   

8.
Deformation and stress from in-pore drying-induced crystallization of salt   总被引:3,自引:0,他引:3  
The deformation and the fracture of porous solids from internal crystallization of salt is explored in the framework of the thermodynamics of unsaturated brittle poroelasticity. In the first place the usual theory of crystal growth in confined conditions is further developed in order to include both the deformation and the drying of the porous solid. The thermodynamics reveals the existence of a dilation coefficient associated with the crystallization process, and provides a solute-crystal equilibrium condition which involves the relative humidity, the supersaturation, and the salt characteristics. This thermodynamic condition and the mechanical equilibrium of the solution-crystal interface combine to give the current crystallization pore radius. Upscaling this information at the macroscopic scale, and taking into account the salt mass supplied by the invading solution, the approach leads to a quantitative analysis of the role of the pore size distribution on the crystal growth under repeated imbibition-drying cycles. The deformation and the fracture of the porous solid from drying-induced crystallization are then considered in the context of brittle poroelasticity. The current unsaturated macroscopic poroelastic properties are upscaled from the microscopic elastic properties of the solid matrix and from the current liquid, crystal and gas saturations. The adoption of a fracture criterion based on the elastic energy that the solid matrix can ultimately store finally leads to the determination of how long a stone can resist repeated cycles of drying-induced crystallization of salt.  相似文献   

9.
Rheologica Acta - Flow birefringence and viscosity of a 10% aqueous solution of sodium lauryl polyoxyethylene sulphate were measured for various polyelectrolyte concentrations and at various...  相似文献   

10.
含盐量对水泥土强度影响的室内试验研究   总被引:5,自引:0,他引:5  
通过含盐量对非有机质土加固强度影响的试验研究,得到了含盐量对水泥土强度的提高或减小的阈值为3.5%。当盐渍土的含盐量低于这个阈值时,盐渍土的加固强度会因可溶性盐的结晶膨胀作用,提高水泥土的强度;相反当盐渍土的含盐量高于该阈值时,盐渍土的强度会因可溶性盐的过多的结晶膨胀作用,使水泥土的结构遭到破坏,从而使水泥土的强度大大降低。同时分析了可溶性硫酸盐、镁盐和氯盐对水泥土的浸蚀性作用,并从盐类对水泥土强度的影响从机理上进行了阐释,提出了高含盐量对水泥土破坏作用的对策。  相似文献   

11.
We studied a nonisothermal dissolution of a solvable solid spherical particle in an axisymmetric non-uniform fluid flow when the concentration level of the solute in the solvent is finite (finite dilution of solute approximation). It is shown that simultaneous heat and mass transfer during solid sphere dissolution in a uniform fluid flow, axisymmetric shear flow, shear-translational flow and flow with a parabolic velocity profile can be described by a system of generalized equations of convective diffusion and energy. Solutions of diffusion and energy equations are obtained in an exact analytical form. Using a general solution the asymptotic solutions for heat and mass transfer problem during spherical solid particle dissolution in a uniform fluid flow, axisymmetric shear flow, shear-translational flow and flow with parabolic velocity profile are derived. Theoretical results are in compliance with the available experimental data on falling urea particles dissolution in water and for solid sphere dissolution in a shear flow.  相似文献   

12.
This paper presents numerical modeling of coupled thermal, hydraulic and mechanical processes in rock salt and crushed salt considering halite solubility constraints. The TOUGH-FLAC simulator is used, with a recently enhanced Equation-Of-State module that includes the thermodynamic properties of aqueous fluids of variable salinity. Laboratory and field scale tests performed on rock salt and crushed salt under temperature gradients are modeled first to evaluate the capabilities of the simulator to reproduce important features, such as porosity changes induced by halite dissolution/precipitation, and brine and heat migration. Since the results are quite satisfactory, the simulator is used to predict the long-term response of a generic salt repository for heat-generating nuclear waste. To evaluate the impacts of halite solubility on the predictions, two simulations that respectively consider or neglect solubility constraints are performed. In the scenario studied, the results are not significantly affected by dissolution/precipitation, and only some differences are observed due to changes in porosity, but the dominating processes remain the same. With the new provisions, TOUGH-FLAC is more complete in terms of processes occurring around a heat-releasing nuclear waste package and can therefore provide more accurate predictions of the long-term performance of a nuclear waste repository in salt formations.  相似文献   

13.
Younes  A.  Ackerer  Ph.  Mose  R. 《Transport in Porous Media》1999,35(3):375-394
Case 5, Level 1 of the international HYDROCOIN groundwater flow modeling project is an example of idealized flow over a salt dome. The groundwater flow is strongly coupled to solute transport since density variations in this example are large (20%).Several independent teams simulated this problem using different models. Results obtained by different codes can be contradictory. We develop a new numerical model based on the mixed hybrid finite elements approximation for flow, which provides a good approximation of the velocity, and the discontinuous finite elements approximation to solve the advection equation, which gives a good approximation of concentration even when the dispersion tensor is very small. We use the new numerical model to simulate the salt dome flow problem.In this paper we study the effect of molecular diffusion and we compare linear and nonlinear dispersion equations. We show the importance of the discretization of the boundary condition on the extent of recirculation and the final salt distribution. We study also the salt dome flow problem with a more realistic dispersion (very small dispersion tensor). Our results are different to prior works with regard to the magnitude of recirculation and the final concentration distribution. In all cases, we obtain recirculation in the lower part of the domain, even for only dispersive fluxes at the boundary. When the dispersion tensor becomes very small, the magnitude of recirculation is small. Swept forward displacement could be reproduced by using finite difference method to compute the dispersive fluxes instead of mixed hybrid finite elements.  相似文献   

14.
Nonisothermal multiphase flow of brine and gas through saline media   总被引:8,自引:0,他引:8  
We propose a general formulation for nonisothermal multiphase flow of brine and gas through saline media. The balance equations include mass balance (three species), equilibrium of stresses and energy balance (total internal energy). Salt, water and air mass balance equations are established. The balance of salt allows the establishment of the equation for porosity evolution due to solid skeleton deformation, dissolution/precipitation of salt and migration of brine inclusions. Water and air mass balance equations are also obtained. Two equations are required for water: total water in the medium and water present in solid phase brine inclusions. The mechanical problem is formulated through the equation of stress equilibrium. Finally, the balance of internal energy is established assuming thermal equilibrium between phases. Some general aspects of the constitutive theory are also presented.  相似文献   

15.
We present a theoretical-numerical investigation of porosity variations induced by temperature gradients in unsaturated saline media. It is known that temperature variations cause humidity variations which lead to liquid flow towards and vapour flow away from the hot source. When this phenomenon occurs in saline media, the liquid is salt saturated brine, so that evaporation causes salt precipitation and an ensuing porosity reduction. Condensation of water causes salt dissolution and porosity increase. This process may be important in the case of heat generating waste because it suggests that selfsealing may take place near the waste. On the other hand, salt mass balance will lead to porosity increases in other zones.  相似文献   

16.
A nonlinear diffusion problem for drug release from 2D polymeric systems with finite dissolution rate is considered. The numerical solutions of such problems were obtained under some constraints in respect to the system geometry, the type of adsorption isotherm and concentration dependent diffusivity [Frenning, G., Stromme, M., 2003. Drug release modeled by dissolution, diffusion and immobilization. Int. J. Pharm. 250, 137–145; Frenning, G., Brohede, U., Stromme, M., 2005. Finite element analysis of the release of slowly dissolving drugs from cylindrical matrix systems. J. Control. Release 107, 320–329]. It is derived a numerical approach to solving a generalized problem, which avoids the above limitations. The proposed numerical scheme based on finite element domain approximation and time difference method is used for simulation of 2D drug release under various model parameters. The effects of drug adsorption and concentration dependent drug diffusivity are demonstrated.  相似文献   

17.
The removal of salt from porous building materials under the influence of an applied voltage gradient normally results in high pH gradients due to the formation of protons and hydroxyl ions at the electrodes. The formed acidic and alkaline regions not only lead to disintegration of the porous material, but also affect the salt transport. In this work we use ion exchange membranes between the electrodes and the porous material to prevent the protons and hydroxyl ions from intruding into the material. The porous material used in this study is fired clay brick, which has been saturated with a 4?mol/l sodium chloride solution prior to the desalination treatment. In order to experimentally determine the salt removal, we monitored the sodium ion concentration profiles across the material with nuclear magnetic resonance (NMR). In addition, we present theoretical predictions for the salt removal according to a model based on the Poisson?CNernst?CPlanck theory for ion transport. From the work reported here, we can conclude that the use of ion exchange membranes to desalinate porous building materials is not useful since it reduces the salt removal rate to such an extent that desalination with poultices, which is driven by diffusion only, is more efficient. The reason behind this is twofold. First, the ion exchange membranes provide a penalty for the ions to leave the material. Second, in the absence of acidic and alkaline regions, the salt concentration at the edges of the porous material will reduce to almost zero, which leads to a locally increased electrical resistance, and thus a reduction of the electrical field in the bulk of the material. Due to this reduction the effect of the applied voltage gradient across the material vanishes, and the salt removal is limited by diffusion.  相似文献   

18.
Large eddy simulations were performed on a modular pump-turbine to study oxygen dissolution inside the draft tube. Air injection was applied over the runner cone surface during turbine operation. Data regarding bubble size, void fraction and interfacial area concentration were presented to understand their influence on oxygen dissolution. Transient single phase and multiphase flow simulations were carried out to investigate the influence of air injection and dissolution within the flow field and turbine performance. Multiphase simulations were conducted by using the mixture multiphase model. The mathematical modeling of oxygen dissolution employed was validated by comparing predicted oxygen dissolution against experimental measurements performed by Zhou et al. (2013). The averaged dissolved oxygen concentration in the range of 1.2–1.4 mg/l was obtained; which is sufficient for an active aerobic microorganism activity for wastewater treatment processes. Dissolution efficiency and the amount of averaged dissolved oxygen inside the draft tube were sensitive to the inlet bubble size. The efficiency of the dissolution increases strongly as the inlet bubble size was reduced. The obtained results revealed that vortex suppression was achieved through air admission within multiphase flow simulation. Moreover, the power generation of the turbine was hardly influenced by the aeration through the runner cone.  相似文献   

19.
A twodimensional finite difference numerical model was developed to describe the transport of dissolved organics originating from nonaqueous phase liquid (NAPL) pool dissolution in saturated porous media in the presence of dissolved humic substances. A rectangular NAPL pool was considered in a homogeneous porous medium with unidirectional interstitial groundwater velocity. It was assumed that dissolved humic substances and aqueous phase contaminants may sorb onto the solid matrix under local equilibrium conditions. The contaminant in the aqueous phase may undergo firstorder decay. Also, the dissolved contaminant may sorb onto humic substances. The transport properties of dissolved humic substances are assumed to be unaffected by sorbing contaminants, because dissolved humic macromolecules are much larger than dissolved contaminants and sorption of nonpolar contaminants onto humic substances do not affect the overall surface charge of humic substances. The sorption characteristics of dissolved humic substances onto clean sand were determined from column experiments. An effective local mass transfer rate coefficient accounting for the presence of dissolved humic substances was developed. Model simulations indicate that dissolved humic substances substantially increase NAPL pool dissolution, and consequently reduce the required pumpandtreat aquifer remediation time.  相似文献   

20.
The drift-flux analysis of one-dimensional two-phase flow of Wallis (Wallis, G.B., 1969. One-dimensional two-phase flow. McGraw-Hill Book Company, New York.) is utilised for the first time to model the behaviour of pneumatic foam flowing vertically through an expansion or an contraction. It is demonstrated that, although a sudden contraction of flow area decreases the liquid fraction, it does not affect the volumetric liquid over-flow rate. It is also demonstrated that a sudden expansion of flow area decreases both the liquid fraction and the volumetric liquid over-flow rate. The liquid fraction of a foam stabilised by 2.92 g/L sodium dodecyl sulphate (SDS) solution flowing through a sudden contraction or expansion was measured by an improved pressure gradient method. The results were found to be consistent with the theoretical analysis. This study has implications for foam fractionation device design, optimisation and process intensification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号