首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-quality ZnO thin films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy. X-ray diffraction and transmission electron microscopy reveal that the ZnO films have high structural quality and an atomically sharp ZnO/Al2O3 interface. The full width at half maximum values of the 0002 and $30\bar{3}2$ ZnO ω-rocking curves are 467.8 and 813.5 arc sec for a 600 nm thick ZnO film. A screw dislocation density of 4.35×108 cm?2 and an edge dislocation density of 3.38×109 cm?2 are estimated by X-ray diffraction. The surface of the ZnO epilayers contains hexagonal pits, which can be observed in the Zn-polar ZnO. The films have a resistivity of 0.119 Ω?cm, an electron concentration of 6.85×1017 cm?3, and a mobility of 76.5 cm2?V?1?s?1 at room temperature. Low temperature photoluminescence measurements show good optical properties comparable to ZnO single crystals.  相似文献   

2.
Al-doped ZnO (AZO) was sputtered on the surface of LiNi1/3Co1/3Mn1/3O2 (NCM) thin film electrode via radio frequency magnetron sputtering, which was demonstrated to be a useful approach to enhance electrochemical performance of thin film electrode. The structure and morphology of the prepared electrodes were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, and transmission electron microscopy techniques. The results clearly demonstrated that NCM thin film showed a strong (104) preferred orientation and AZO was uniformly covered on the surface of NCM electrode. After 200 cycles at 50 μA μm?1 cm?2, the NCM/AZO-60s electrode delivered highest discharge capacity (78.1 μAh μm?1 cm?2) compared with that of the NCM/AZO-120s electrode (62.4 μAh μm?1 cm?2) and the bare NCM electrode (22.3 μAh μm?1 cm?2). In addition, the rate capability of the NCM/AZO-60s electrode was superior to the NCM/AZO-120s and bare NCM electrodes. The improved electrochemical performance can be ascribed to the appropriate thickness of the AZO coating layer, which not only acted as HF scavenger to keep a stable electrode/electrolyte interface but also reduced the charge transfer resistance during cycling.  相似文献   

3.
A compact two-gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was developed for trace methane and ammonia quantification in impure hydrogen. The sensor is equipped with a micro-resonator to confine the sound wave and enhance QEPAS signal. The normalized noise-equivalent absorption coefficients (1σ) of 2.45×10?8 cm?1?W/ $\sqrt{}$ Hz and 9.1×10?9 cm?1?W/ $\sqrt{}$ Hz for CH4 detection at 200 Torr and NH3 detection at 50 Torr were demonstrated with the QEPAS sensor configuration, respectively. The influence of water vapor on the CH4 channel was also investigated.  相似文献   

4.
P. Rosaiah  O. M. Hussain 《Ionics》2014,20(8):1095-1101
LiFePO4 has been synthesized by hydrothermal synthesis. A 2-in. sputtering target has been prepared using synthesized powder and employed for the deposition of LiFePO4 films by radio frequency magnetron sputtering. Microstructural properties have been studied by using X-ray diffraction, Raman spectroscopy, and atomic force microscope. The films deposited at 350 °C with subsequent annealing at 600 °C for 4 h exhibited well-crystallized peaks along with (101) predominant orientation which corresponds to orthorhombic olivine-type structure with Pnma space group. The electrochemical properties have been studied for films in aqueous as well as in non-aqueous media. Both the electrochemical cells at same current density of 20 μA/cm2 delivered the same initial discharge capacity around 38 μAh/cm2 μm. The Li//LiFePO4 cell exhibited good cycling stability for the first 20 cycles.  相似文献   

5.
Gallium antimonide (GaSb) films were deposited onto fused silica and n-Si (100) substrates by coevaporating Ga and Sb from appropriate evaporation sources. The films were polycrystalline in nature. The size and the shape of the grains varied with the change in the substrate temperature during deposition. The average surface roughness of the films was estimated to be 10 nm. Grain boundary trap states varied between 2×1012 and 2.2×1012 cm?2 while barrier height at the grain boundaries varied between 0.09 eV and 0.10 eV for films deposited at higher temperatures. Stress in the films decreased for films deposited at higher temperatures. XPS studies indicated two strong peaks located at ~543 eV and ~1121 eV for Sb 3d3/2 and Ga 2p3/2 core-level spectra, respectively. The PL spectra measured at 300 K was dominated by a strong peak located ~0.55 eV followed by two low intensity peaks ~0.63 eV and 0.67 eV. A typical n-Si/GaSb photovoltaic cell fabricated here indicated V oc~311 mV and J~29.45 mA/cm2, the density of donors (N d)~3.87×1015 cm?3, built in potential (V bi)~0.48 V and carrier life time (τ)~28.5 ms. Impedance spectroscopy measurements indicated a dielectric relaxation time ~100 μs.  相似文献   

6.
A crystalline structure of LiCoO2 sample was synthesized at different stirring times via sol-gel method. This was followed by the electrochemical characterization of LiCoO2 in 5 M LiNO3 aqueous electrolyte. The hexagonal LiCoO2 was stirred for 30 h produced the highest peak intensity and smallest particle size. A morphological analysis showed the particle size distribution within the range of 0.32–0.47 μm. At lower scan rates of cyclic voltammetry, three pairs of redox peaks at ESCE = 0.81/0.65, 0.89/0.83 and 1.01/0.95 V were observed. The peak separation was proportionally consistent with Li+ diffusion coefficients of 7.42 × 10?8 cm2 s?1 (anodic) and 3.59 × 10?8 cm2 s?1 (cathodic). For specific capacity, the LiCoO2 demonstrated a higher initial specific capacity (115.49 mA h g?1). A small difference (1.92 Ω) in the charge transfer resistance before and after a charge discharge analysis indicated that the Li+ ions had been well-diffused during the intercalation/de-intercalation process.  相似文献   

7.
A new cathode material for lithium ion battery FeF3?·?0.33H2O/C was synthesized successfully by a simple one-step chemico-mechanical method. It showed a noticeable initial discharge capacity of 233.9 mAh g?1 and corresponding charge capacity of 186.4 mAh g?1. A reversible capacity of ca.157.4 mAh g?1 at 20 mA g?1 can be obtained after 50 charge/discharge cycles. To elucidate the lithium ion transportation in the cathode material, the methods of electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) were applied to obtain the lithium diffusion coefficients of the material. Within the voltage level of 2.05–3.18 V, the method of EIS showed that \( {D}_{{\mathrm{Li}}^{+}} \) varied in the range of 1.2?×?10?13?~?3.6?×?10?14 cm2 s?1 with a maximum of 1.2?×?10?13 cm2 s?1 at 2.5 V. The method of GITT gave a result of 8.1?×?10?14?~?1.2?×?10?15 cm2 s?1. The way and the range of the variation for lithium ion diffusion coefficients measured by the GITT method show close similarity with those obtained by the EIS method. Besides, they both reached their maximum at a voltage level of 2.5 V.  相似文献   

8.
Dongsheng Guan  Ying Wang 《Ionics》2013,19(6):879-885
Bamboo-type TiO2 nanotube arrays prepared via anodic oxidation are modified with Ag nanoparticles by pulsed electrochemical deposition, for improved lithium-ion intercalation property as the anode material in lithium-ion batteries. Heat treatment converts as-formed nanotubes into anatase for Ag deposition. Bare and Ag-modified nanotubes are cycled at a current density of 800 μA?cm?2 between 1.0 and 2.6 V (vs. Li/Li+). All Ag-modified nanotubes exhibit significantly improved or even doubled areal discharge capacities and better cycleability compared to bare nanotubes. Particularly, the nanotubes modified using 100 Ag deposition cycles deliver the highest initial discharge capacity of 199.6 μA?h cm?2 and the largest final discharge capacity of 131.7 μA?h cm?2 after 50 electrochemical cycles, while bare nanotubes exhibit an initial capacity of 93.5 μA?h cm?2 and a final discharge capacity of 54.8 μA?h cm?2. The former also exhibits 10 % higher capacity retention efficiency than the latter. In addition, an increase in the capacity of modified nanotubes is observed with more Ag deposition, but superfluous Ag content yields reduced capacities due to slower Li-ion transfer inside. Finally, kinetic characteristics of TiO2 nanotubes are explored using cyclic voltammetry to understand the origin of improvements in electrochemical properties of Ag-modified nanotubes.  相似文献   

9.
Oligo(ethylene oxide)-functionalized trialkoxysilanes were synthesized through hydrosilylation reaction by reacting trialkoxysilane with oligo(ethylene oxide) allyl methyl ether using PtO2 as a catalyst. The physical properties of these compounds, such as viscosity, dielectric constant, and ionic conductivity, were characterized. Among them, [3-(2-(2-methoxyethoxy)ethoxy)-propyl]triethoxysilane (TESM2) exhibited a commercial viable ionic conductivity of 1.14 mS cm?1 and a wide electrochemical window of 5.2 V. A preliminary investigation was conducted by using TESM2 as an electrolyte solvent for high-voltage applications in lithium-ion batteries. Using 1 M LiPF6 in TESM2 with 1 vol% vinyl carbonate as an electrolyte, LiCoO2/Li half-cell delivered a specific capacity of 153.9 mAh g?1 and 90 % capacity retention after 80 cycles (3.0–4.35 V, 28 mA g?1); Li1.2Ni0.2Mn0.6O2/Li4Ti5O12 full cell exhibited the initial capacity of 161.3 mAh g?1 and 86 % capacity retention after 30 cycles (0.5–3.1 V, 18 mA g?1).  相似文献   

10.
This article aims to present a new alternative to waste management of spent Li-ion batteries from cell phones. In this sense, the proposed is recycling the cobalt from Li-ion cathode by electrodeposition and apply it as corrosion protector of AISI 430 stainless steel. Thus, two greatest environmental problems can be solved, producing a low-cost and high-corrosion-resistant stainless steel. The cobalt electrodeposition bath came from acid dissolution of spent Li-ion cathode with chemical formula LiCoO2. The charge efficiency for cobalt electrodeposition in ?1.0 V and pH = 3 reaches 95 %. A protective layer of Co3O4 was successfully obtained by treatment of AISI 430 stainless steel with cobalt electrodeposited at 800 °C for 200 h in air atmosphere. The corrosion current of AISI 430 stainless steel in artificial seawater was reduced from 30 to 0.76 μA cm?2. The treatment proposed produces a AISI 430 stainless steel with double of corrosion resistance and half of cost if compared with AISI 304 stainless steel.  相似文献   

11.
N. Padmanathan  S. Selladurai 《Ionics》2013,19(11):1535-1544
NiCo2O4 nanostructure was successfully synthesized via a d-glucose-assisted solvothermal process. Spinel-type cubic phase and mesoporous microstructure of the sample for different calcination temperatures were confirmed by X-ray diffraction and transmission electron microscopy. Typical pseudocapacitance feature of the NiCo2O4 treated at different temperatures was then evaluated in aqueous 6 M KOH electrolyte solution. Electrochemical measurements showed that the spinel nickel cobaltite nanostructure heated at 300 °C exhibits maximum specific capacitances of 524 F g?1 at 0.5 A g?1 and 419 F g?1 at 10 A g?1 with excellent cycle stability and only ~9 % of capacitance loss after 2,500 cycles. This demonstrates the potential application of the material for supercapacitors. The attractive pseudocapacitive performance of NiCo2O4 is mainly attributed to the redox contribution of the Ni and Co metal species, high surface area, and their desired mesoporous nanostructure.  相似文献   

12.
A novel sensor consisting of nitrogen-doped multi-walled carbon nanotubes was fabricated by means of chemical vapor deposition technique with decomposition of acetonitrile onto oxidized silicon wafer using ferrocene as catalyst. The electrochemical response of carbon nanotubes-based sensor towards oxidation of paracetamol to N-acetyl-p-quinone imine was investigated in phosphate buffer solution (pH 7.0) by means of standard electrochemical techniques. A quasi-reversible response for oxidation of paracetamol was identified on carbon nanotubes-based sensor with detection limit and sensitivity of 0.485 μM and 0.8406 A M?1 cm?2, respectively. It was found that the nitrogen doping in carbon nanotubes enhances the sensor's detection ability. Namely, electrochemical studies performed on film consisting of pristine carbon nanotubes reveal as well quasi-reversible response towards oxidation of paracetamol but nevertheless poorer detection ability and sensitivity (0.950 μM; 0.601 A M?1 cm?2). The findings strongly suggest the application of nitrogen-doped carbon nanotubes in biosensing.  相似文献   

13.
Vanadium dioxide thin films have been deposited on Corning glass substrates by a KrF laser ablation of V2O5 target at the laser fluence of 2 J?cm?2. The substrate temperature and the target-substrate distance were set to 500 °C and 4 cm, respectively. X-ray diffraction analysis showed that pure VO2 is only obtained at an oxygen pressure range of 4×10?3–2×10?2 mbar. A higher optical switching contrast was obtained for the VO2 films deposited at 4×10?3–10?2 mbar. The films properties were correlated to the plume-oxygen gas interaction monitored by fast imaging of the plume.  相似文献   

14.
15.
Mesoporous Ni(OH)2/Co(OH)2 electrode materials were synthesized via a simple one-pot procedure by combining homogeneous precipitation and stepwise precipitation method. The configuration of the porous Ni(OH)2/Co(OH)2 electrode materials synthesized provides 3D electron transmission channels through a high conductive Co(OH)2 distributed in the peripheral nanolayer of the composites, which is beneficial to rate capability and cycle stability. The Ni(OH)2/Co(OH)2 electrode materials have a specific surface area of 229 m2 g?1, which is approximately 40% higher than that of Ni(OH)2 (163 m2 g?1). Their specific capacitance is up to 1202 and 1022 F g?1 at the current densities of 10 and 20 A g?1, respectively. Furthermore, the capacitance retention of the electrode materials at the current density of 10 A g?1 is 98% after 5000 cycles. The synthesis method provides a novel simple route to fabricate heterostructure materials for capacitors with high electrochemical performance.
Graphical abstract ?
  相似文献   

16.
Nitrogen-doped porous activated carbons (N-PHACs) have been successfully synthesized using pomegranate husk as carbon precursor via ZnCl2-activation carbonization and subsequent urea-assisted hydrothermal nitrogen-doping method. The obtained N-PHACs possesses abundant mesoporous structure, high specific surface area (up to 1754.8 m2 g?1), pore volume (1.05 cm3 g?1), and nitrogen-doping content (4.51 wt%). Besides, the N-PHACs-based material showed a high specific capacitance of 254 F g?1 at a current density of 0.5 A g?1 and excellent rate performance (73% capacitance retention ratio even at 20 A g?1) in 2 M KOH aqueous electrolyte, which is attributed to the contribution of double-layer capacitance and pseudocapacitance. The assembled N-PHACs-based symmetric capacitor with a wide operating voltage range of 0–1.8 V exhibits a maximum energy density of 15.3 Wh kg?1 at a power density of 225 W kg?1 and superior cycle stability (only 6% loss after 5000 cycles) in 0.5 M Na2SO4 aqueous electrolyte. These exciting results suggest that the novel N-doping porous carbon material prepared by a green and low-cost design strategy has a potential application as high-performance electrode materials for supercapacitors.  相似文献   

17.
The structure and electrochemical properties of amorphous CoS2 and crystalline CoS2 have been studied with both experimental characterization and theoretical calculations. In the field of experimental characterization, a facile chemical precipitation method is used to synthesize amorphous and crystalline CoS2 samples with calcining temperatures of 200 and 280 °C, respectively. Comparing with crystalline CoS2, amorphous structure of CoS2 manifests great electron conductivity, effective porous structure, and exhibit a high specific capacitance of 996.16 F g?1 at current density of 0.5 A g?1, excellent rate capability of 89.8% retention with the current density ranging from 0.5 to 5 A g?1, and a great cycling stability of 97.6% retention after 10,000 cycles at 2 A g?1 in 6 mol L?1 KOH aqueous electrolyte. In the area of theoretical calculation, we used the first principle and obtained the band structure with band gap of 0.00369 eV and DOSs with high locality of D-orbital from 69.88689 electrons/eV main peak, in the CoS2 amorphous. The result confirms that amorphous CoS2 have higher conductivity than crystalline CoS2 in theory. In addition, the as-assembled asymmetric supercapacitor of Co-S-200//AC also exhibits the maximum specific capacitance of 104 F g?1 within a cell voltage from 0 to 1.5 V at current density of 0.5 A g?1 and indicates a great cycling stability of 95.68% and excellent capacitance behavior. All results demonstrate a great potential of amorphous CoS2 active material for supercapacitors.  相似文献   

18.
We describe a technique of simultaneous detection of 14NO and 15NO by means of Faraday Modulation Spectroscopy (FAMOS) based on a cw distributed feedback quantum cascade laser (QCL) operating near 5.4 μm. FAMOS is a spectroscopic method for selective, sensitive, and time-resolved detection of free radical molecules such as NO, in the mid-infrared spectral region. The selected spectral lines are the Q (1.5) for 15NO located at 1842.76 cm?1 and the P (9.5) for 14NO located at 1842.93 cm?1. The detection limit (1σ) of 6 ppb $/\sqrt{\mathrm{Hz}}$ for 15NO and 62 ppb $/\sqrt{\mathrm{Hz}}$ for 14NO has been achieved. The simultaneous detection was performed using a fast laser frequency switching between the two isotopologues with a time resolution of 2 s. The isotope ratio (δ 15N) has been determined with a precision (1σ) of 0.52‰ at 800-s averaging time for 100 ppm NO-gas with a time resolution of 2 s. δ 15N is determined after NO release from nitrite by chemical reduction with potassium iodine.  相似文献   

19.
We make a frequentist analysis of the parameter space of the CMSSM and NUHM1, using a Markov Chain Monte Carlo (MCMC) with 95 (221) million points to sample the CMSSM (NUHM1) parameter spaces. Our analysis includes the ATLAS search for supersymmetric jets?+? signals using ~5/fb of LHC data at 7 TeV, which we apply using PYTHIA and a Delphes implementation that we validate in the relevant parameter regions of the CMSSM and NUHM1. Our analysis also includes the constraint imposed by searches for BR(B s μ + μ ?) by LHCb, CMS, ATLAS and CDF, and the limit on spin-independent dark matter scattering from 225 live days of XENON100 data. We assume M h ~125 GeV, and use a full set of electroweak precision and other flavour-physics observables, as well as the cold dark matter density constraint. The ATLAS5/fb constraint has relatively limited effects on the 68 and 95 % CL regions in the (m 0,m 1/2) planes of the CMSSM and NUHM1. The new BR(B s μ + μ ?) constraint has greater impacts on these CL regions, and also impacts significantly the 68 and 95 % CL regions in the (M A ,tanβ) planes of both models, reducing the best-fit values of tanβ. The recent XENON100 data eliminate the focus-point region in the CMSSM and affect the 68 and 95 % CL regions in the NUHM1. In combination, these new constraints reduce the best-fit values of m 0,m 1/2 in the CMSSM, and increase the global χ 2 from 31.0 to 32.8, reducing the p-value from 12 % to 8.5 %. In the case of the NUHM1, they have little effect on the best-fit values of m 0,m 1/2, but increase the global χ 2 from 28.9 to 31.3, thereby reducing the p-value from 15 % to 9.1 %.  相似文献   

20.
Optical feedback cavity-enhanced absorption spectroscopy (OF CEAS) has been demonstrated with a thermoelectrically cooled continuous wave distributed feedback quantum cascade laser (QCL) operating at wavelengths around 7.84 μm. The QCL is coupled to an optical cavity which creates an absorption pathlength greater than 1000 m. The experimental design allows optical feedback of infra-red light, resonant within the cavity, to the QCL, which initiates self-locking at each TEM00 cavity mode frequency excited. The QCL linewidth is narrowed to below the mode linewidth, greatly increasing the efficiency of injection of light into the cavity. At the frequency of each longitudinal cavity mode, the absorption coefficient of an intracavity sample is obtained from the transmission at the mode maximum, measured with a thermoelectrically cooled detector: spectral line profiles of CH4 and N2O in ambient air were recorded simultaneously and with a resolution of 0.01386 cm?1. A minimum detectable absorption coefficient of 5.5×10?8 cm?1 was demonstrated after an averaging time of 1 s for this completely thermoelectrically cooled system. The bandwidth-normalised limit for a single cavity mode is 5.6×10?9 cm?1?Hz?1/2 (1σ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号