首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
ZnO thin films were epitaxially grown on sapphire (0 0 0 1) substrates by radio frequency magnetron sputtering. ZnO thin films were then annealed at different temperatures in air and in various atmospheres at 800 °C, respectively. The effect of the annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films are investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL). A strong (0 0 2) diffraction peak of all ZnO thin films shows a polycrystalline hexagonal wurtzite structure and high preferential c-axis orientation. XRD and AFM results reveal that the better structural quality, relatively smaller tensile stress, smooth, uniform of ZnO thin films were obtained when annealed at 800 °C in N2. Room temperature PL spectrum can be divided into the UV emission and the Visible broad band emission. The UV emission can be attributed to the near band edge emission (NBE) and the Visible broad band emission can be ascribed to the deep level emissions (DLE). By analyzing our experimental results, we recommend that the deep-level emission correspond to oxygen vacancy (VO) and interstitial oxygen (Oi). The biggest ratio of the PL intensity of UV emission to that of visible emission (INBE/IDLE) is observed from ZnO thin films annealed at 800 °C in N2. Therefore, we suggest that annealing temperature of 800 °C and annealing atmosphere of N2 are the most suitable annealing conditions for obtaining high quality ZnO thin films with good luminescence performance.  相似文献   

2.
Present p-type ZnO films tend to exhibit high resistivity and low carrier concentration, and they revert to their natural n-type state within days after deposition. One approach to grow higher quality p-type ZnO is by codoping the ZnO during growth. This article describes recent results from the growth and characterization of Zr–N codoped p-type ZnO thin films by pulsed laser deposition (PLD) on (0001) sapphire substrates. For this work, both N-doped and Zr–N codoped p-type ZnO films were grown for comparison purposes at substrate temperatures ranging between 400 to 700 °C and N2O background pressures between 10−5 to 10−2 Torr. The carrier type and conduction were found to be very sensitive to substrate temperature and N2O deposition pressure. P-type conduction was observed for films grown at pressures between 10−3 to 10−2 Torr. The Zr–N codoped ZnO films grown at 550 °C in 1×10−3 Torr of N2O show p-type conduction behavior with a very low resistivity of 0.89 Ω-cm, a carrier concentration of 5.0×1018 cm−3, and a Hall mobility of 1.4 cm2 V−1 s−1. The structure, morphology and optical properties were also evaluated for both N-doped and Zr–N codoped ZnO films.  相似文献   

3.
The thin films of zinc oxide have been produced by the pulse laser deposition method at various levels of gallium and nitrogen doping. To obtain the n-type films we used gallium doping with concentration of gallium from zero up to 5 at %. The dependence of photoluminescence of the epitaxial ZnO:Ga films on the concentration of gallium doping has been studied. An optimum range of the n-type ZnO films doping with gallium has been determined to obtain highly effective films from the viewpoint of realizing p-n transitions. This range, on the one hand, defines the maximal PL amplitude and, on the other hand, specifies the minimal specific resistance that corresponds to an interval of 0.125–1.000 at % Ga. To produce the p-type ZnO:(Ga, N) films, the ZnO targets with the content of GaN from zero up to 2 at % were used. N2O was used as a buffer gas. A difference is observed in the positions of the peaks of the emission lines of the photoluminescence spectra for the ZnO films, doped with gallium (Ga) and co-doped with gallium and nitrogen (N).  相似文献   

4.
Heavily acceptor doped zinc oxide (ZnO) films were deposited on quartz substrates by plasma-assisted pulsed laser deposition (PA-PLD) using a non-sintered target heavily doped with phosphorus or copper and radio frequency induction-coupled nitrogen or oxygen plasma (RF-ICP). The p-type ZnO layer was achieved by a nitrogen acceptor dopant using the technique of plasma-assisted nitrogen (PA-N) pulsed laser deposition. Photoluminescence spectra showed a peak from phosphorus- or copper-bound excitons at about 380 nm and a broad, green defect-related band occurring at about 550 nm. Transmission spectra showed a blue shift of the near-band-edge wavelength and a worsening of transmission by heavily copper-doped zinc oxide.  相似文献   

5.
Using a pulsed laser deposition (PLD) process on a ZnO target in an oxygen atmosphere, thin films of this material have been deposited on Si(111) substrates. An Nd: YAG pulsed laser with a wavelength of 1064 nm was used as the laser source. The influences of the deposition temperature, laser energy, annealing temperature and focus lens position on the crystallinity of ZnO films were analyzed by X-ray diffraction. The results show that the ZnO thin films obtained at the deposition temperature of 400°C and the laser energy of 250 mJ have the best crystalline quality in our experimental conditions. The ZnO thin films fabricated at substrate temperature 400°C were annealed at the temperatures from 400°C to 800°C in an atmosphere of N2. The results show that crystalline quality has been improved by annealing, the optimum temperature being 600°C. The position of the focusing lens has a strong influence on pulsed laser deposition of the ZnO thin films and the optimum position is 59.5 cm from the target surface for optics with a focal length of 70 cm.   相似文献   

6.
《Composite Interfaces》2013,20(9):863-872
The ZnO films doped with 3 wt% phosphorus (P) were produced by activating phosphorus doped ZnO (ZnO:P) thin films in oxygen (O2) ambient at 600°C for 30, 60, 90 and 120 min, respectively. As-deposited films doped with phosphorus are highly conductive and n type. All the films showed p-type conduction after annealing, in an O2 ambient atmosphere. The activation energies of the phosphorus dopant in the p-type ZnO under O2 ambient gases indicate that phosphorus substitution on the O site yielded a deep level in the gap. With a further increase of the annealed durations, the crystalline quality of the ZnO:P sample is degraded. The best p-type ZnO:P film deposited at 600°C for 30 min shows a resistivity of 1.85 Ω cm and a relatively high hole concentration of 5.1 × 1017cm–3 at room temperature. The films exhibit a polycrystalline hexagonal wurtzite structure without preferred orientation. The mean grain sizes are calculated to be about 60, 72, 78, 85 and 90 nm for the p-type ZnO films prepared at 600°C for 30, 60, 90 and 120 min, respectively. Room temperature photoluminescence (PL) spectra of the ZnO film exhibit two emission bands — paramount excitonic ultraviolet (UV) emission and weak deep level visible emission. The excellent emission from the film annealed at 600°C for 30 min is attributed to the good crystalline quality of the p-type ZnO film and the low rate of formation of intrinsic defects at such short duration. The visible emission consists of two components in the green range.  相似文献   

7.
Iron nitride films were produced by pulsed laser deposition of Fe onto an Al substrate in an N2 atmosphere and their M?ssbauer spectra and powder X-ray diffraction patterns were measured. The nitrogen content of the iron nitride films varied depending on the N2 pressure. Under high N2 pressures, γ”-FeN (ZnS structure) and γ’”-FeN (NaCl structure) were obtained. The yields of these two phases could be controlled by varying the Al substrate temperature. γ”-FeN and γ’”-FeN were found to be paramagnetic and antiferromagnetic, respectively, at 5?K.  相似文献   

8.
ZnO and Al-doped ZnO(ZAO) thin films have been prepared on glass substrates by direct current (dc) magnetron sputtering from 99.99% pure Zn metallic and ZnO:3 wt%Al2O3 ceramic targets, the effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. It shows that the surface morphologies of ZAO films exhibit difference from that of ZnO films, while their preferential crystalline growth orientation revealed by X-ray diffraction remains always the (0 0 2). The optical transmittance and photoluminescence (PL) spectra of both ZnO and ZAO films are obviously influenced by the substrate temperature. All films exhibit a transmittance higher than 86% in the visible region, while the optical transmittance of ZAO films is slightly smaller than that of ZnO films. More significantly, Al-doping leads to a larger optical band gap (Eg) of the films. It is found from the PL measurement that near-band-edge (NBE) emission and deep-level (DL) emission are observed in pure ZnO thin films. However, when Al was doped into thin films, the DL emission of the thin films is depressed. As the substrate temperature increases, the peak of NBE emission has a blueshift to region of higher photon energy, which shows a trend similar to the Eg in optical transmittance measurement.  相似文献   

9.
In-N codoped ZnMgO films have been prepared on glass substrates by direct current reactive magnetron sputtering. The p-type conduction could be obtained in ZnMgO films by adjusting the N2O partial pressures. The lowest resistivity was found to be 4.6 Ω cm for the p-type ZnMgO film deposited under an optimized N2O partial pressure of 2.3 mTorr, with a Hall mobility of 1.4 cm2/V s and a hole concentration of 9.6 × 1017 cm−3 at room temperature. The films were of good crystal quality with a high c-axis orientation of wurtzite ZnO structure. The presence of In-N bonds was identified by X-ray photoelectron spectroscopy, which may enhance the nitrogen incorporation and respond for the realization of good p-type behavior in In-N codoped ZnMgO films. Furthermore, the ZnMgO-based p-n homojunction was fabricated by deposition of an In-doped n-type ZnMgO layer on an In-N codoped p-type ZnMgO layer. The p-n homostructural diode exhibits electrical rectification behavior of a typical p-n junction.  相似文献   

10.
Parshina  L. S.  Novodvorsky  O. A.  Panchenko  V. Ya.  Khramova  O. D.  Cherebilo  Ye. A.  Lotin  A. A.  Wenzel  C.  Trumpaicka  N.  Bartha  J. W. 《Laser Physics》2011,21(4):790-795
The production of n- and p-type high-quality film structures is a foreground task in tackling the problem of growing the light-emitting p-n junctions based on zinc oxide. The ZnO:N and ZnO:P thin-film samples are produced from ceramic targets using the pulsed laser deposition. Zn3N2, MgO, and Zn3P2 are introduced in the ZnO ceramic targets for the fabrication of the p-type ZnO films. Gases O2 and N2O are used as buffer gases. The thermal annealing of the ZnO films is employed. The resistance and photoluminescence (PL) spectra of the ZnO films are measured prior to and after annealing. The dependence of the ZnO PL peak amplitude and position prior to and after annealing on the level of doping with nitrogen and phosphorus is established. The PL characteristics of the films are studied at cw optical excitation using a He-Cd laser with a radiation wavelength of 325 nm. The PL spectra in the interval 300–700 nm are recorded by an HR4000 Ocean Optics spectrometer in the temperature range 10–400 K. The effect of the conditions for the film deposition on the PL spectra is analyzed. The effect of the N- and P-doping level of the ZnO films on the PL intensity of the films and the position of the PL bands in the UV region is investigated. The short-wavelength (250–400 nm) transmission spectra of the ZnO:P films are measured. The effect of the P-doping level on the band gap of the ZnO films is studied.  相似文献   

11.
ZrNx films were sputtered in an Ar + N2 atmosphere, with different substrate biases (0 to −200 V) at various nitrogen flow ratios (%N2 = 0.5-24%). The surface morphology, resistivity, crystllinity, and bonding configuration of ZrNx films, before and after vacuum annealing, were investigated. As compared with ZrNx films grown without substrate bias, before and after annealing, the resistivity of 1% and 2% N2 films decreases with increasing substrate biases. Simultaneously, if the applied bias is too high, the crystallinity of ZrNx film will decrease. The surfaces of 1% and 2% N2 flow films deposited without bias have small nodules, whereas the surface morphology of films deposited at −100 V of substrate bias exhibits large nodules and rugged surface. Once a −200 V of substrate bias is applied to the substrate, the surface morphology of ZrNx films, grown at 1% and 2% nitrogen flow ratios, is smooth. Furthermore, there are two deconvoluted peaks in XPS spectra (i.e., Zr-O and Zr-N) of ZrNx films deposited at −200 V of substrate bias before and after annealing. On the other hand, the surface morphology changes dramatically from rugged surfaces for film deposited at lower nitrogen flow ratio (%N2 < 1%) to smoother and denser surfaces for film grown at higher nitrogen flow ratio (%N2 ≥ 1%). The Zr-N bonding in 2% N2 films still exist after annealing at 700 °C, while the Zr-N bonding in 0.5% and 16% N2 flow film vanish at the same temperature. The connection between the resistivity, crystallinity, surface morphology, and bonding configuration of ZrNx films and how they are influenced by the substrate bias and nitrogen flow ratio are discussed in this paper.  相似文献   

12.
We have studied the properties of ZnO thin films grown by laser ablation of ZnO targets on (0 0 0 1) sapphire (Al2O3), under substrate temperatures around 400 °C. The films were characterized by different methods including X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM). XPS analysis revealed that the films are oxygen deficient, and XRD analysis with θ-2θ scans and rocking curves indicate that the ZnO thin films are highly c-axis oriented. All the films are ultraviolet (UV) sensitive. Sensitivity is maximum for the films deposited at lower temperature. The films deposited at higher temperatures show crystallite sizes of typically 500 nm, a high dark current and minimum photoresponse. In all films we observe persistent photoconductivity decay. More densely packed crystallites and a faster decay in photocurrent is observed for films deposited at lower temperature.  相似文献   

13.
张军  谢二庆  付玉军  李晖  邵乐喜 《物理学报》2007,56(8):4914-4919
采用射频反应溅射法在玻璃衬底上制备Zn3N2薄膜,然后向真空室中通入纯氧气进行热氧化制备ZnO薄膜.利用X射线衍射、扫描电子显微镜、霍尔效应测量、透射光谱和光致发光光谱等表征技术,研究了氧化温度和氧化时间对ZnO薄膜的结晶质量、电学性质和光学性能的影响.研究结果显示,450 ℃ 下氧化2 h后的样品中除含有ZnO外,还有Zn3N2成分,500 ℃下氧化2 h可以制备出电阻率为0.7 Ωcm,空穴载流子浓度为10关键词: p型ZnO薄膜 3N2薄膜')" href="#">Zn3N2薄膜 射频溅射 原位氧化  相似文献   

14.
Doped zinc oxide thin films are grown on glass substrate at room temperature under oxygen atmosphere, using pulsed laser deposition (PLD). O2 pressure below 1 Pa leads to conductive films. A careful characterization of the film stoichiometry and microstructure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) concludes on a decrease in crystallinity with Al and Ga additions (≤3%). The progressive loss of the (0 0 2) orientation is associated with a variation of the c parameter value as a function of the film thickness and substrate nature. ZnO:Al and ZnO:Ga thin films show a high optical transmittance (>80%) with an increase in band gap from 3.27 eV (pure ZnO) to 3.88 eV and 3.61 eV for Al and Ga doping, respectively. Optical carrier concentration, optical mobility and optical resistivity are deduced from simulation of the optical data.  相似文献   

15.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

16.
Phosphorus (P)-doped ZnO thin films with amphoteric doping behavior were grown on c-sapphire substrates by radio frequency magnetron sputtering with various argon/oxygen gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio without post-annealing. The P-doped ZnO films grown at a argon/oxygen ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of 1.5 × 1017 cm−3 and 2.5 cm2/V s, respectively. X-ray diffraction showed that the ZnO (0 0 0 2) peak shifted to lower angle due to the positioning of P3− ions with a larger ionic radius in the O2− sites. This indicates that a p-type mechanism was due to the substitutional PO. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction light emitting diode showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.  相似文献   

17.
N-doped p-type ZnO films were grown by plasma-free metal-organic chemical vapor deposition (MOCVD). The effect of substrate temperature on the electrical, optical, and structural properties of the N-doped ZnO films was investigated by Hall-effect, photoluminescence, X-ray diffraction measurements. The electrical properties of the films were extremely sensitive to the substrate temperature and the conduction type could be reversed in a narrow range from 380 °C to 420 °C. Based on X-ray photoelectron spectroscopy, a high compensation effect in the N-doped ZnO films grown by plasma-free MOCVD was suggested to explain the temperature-dependent phenomenon.  相似文献   

18.
非掺杂ZnO薄膜中紫外与绿色发光中心   总被引:27,自引:2,他引:27       下载免费PDF全文
林碧霞  傅竹西  贾云波  廖桂红 《物理学报》2001,50(11):2208-2211
用直流反应溅射方法在硅衬底上淀积了ZnO薄膜,测量它们的光致发光(PL)光谱,观察到两个发光峰,峰值能量分别为3.18(紫外峰,UV)和2.38eV(绿峰).样品用不同温度分别在氧气、氮气和空气中热处理后,测量了PL光谱中绿峰和紫外峰强度随热处理温度和气氛的变化,同时比较了用FP-LMT方法计算的ZnO中几种本征缺陷的能级位置.根据实验和能级计算的结果,推测出ZnO薄膜中的紫外峰与ZnO带边激子跃迁有关,而绿色发光主要来源于导带底到氧错位缺陷(OZn)能级的跃迁,而不是通常认为的氧空 关键词: ZnO薄膜 热处理 光致发光光谱 缺陷能级  相似文献   

19.
ZnO:N thin films were deposited on sapphire substrate by metal organic chemical vapor deposition with NH3 as N-doping sources. The reproducible p-type ZnO:N film with hole concentration of ∼1017 cm−3 was successfully achieved by subsequent in situ thermal annealing in N2O plasma protective ambient, while only weak p-type ZnO:N film with remarkably lower hole concentration of ∼1015 cm−3 was obtained by annealing in O2 ambient. To understand the mechanism of the p-type doping behavior of ZnO:N film, X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption near-edge spectroscopy (XANES) measurements have been applied to investigate the local electronic structure and chemical states of nitrogen atoms in ZnO:N films.  相似文献   

20.
We report the influence of Al concentration on electrical, structural, optical and morphological properties of Al-As codoped p-ZnO thin films using RF magnetron sputtering. Al-As codoped p-ZnO films with different Al concentrations were fabricated using As back diffusion from the GaAs substrate and sputtering Al2O3 mixed ZnO targets (1, 2 and 4 at%). The grown films were investigated by Hall effect measurement, X-ray diffraction (XRD), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and atomic force microscopy (AFM) to study the electrical, structural, optical and morphological properties of the films. From the XRD, it was observed that both full-width at half-maximum (FWHM) and c-axis lattice constant have similar trends with respect to Al concentration. Hall measurements showed that the hole concentration increases as the Al concentration increases from 1015 to 1020 cm−3. The increase in hole concentration upon codoping was supported by the red shift in the near-band-edge (NBE) emission observed from room temperature PL spectra. The proposed p-type mechanism due to AsZn-2VZn complex was confirmed by low temperature PL and XPS analysis. The low FWHM, resistivity and peak-to-valley roughness observed by XRD, Hall measurement and AFM, respectively, suggest that 1 at% Al-doped ZnO:As film is the best codoped film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号