首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of an ongoing lead discovery project we have developed a convenient method for the modification and substitution of indole moieties at the 3-position. Selective bromination of three different 2-carboxyindoles was followed by Suzuki cross-coupling with aryl and heteroaryl boronic acids on a Merrifield resin solid-phase. After column chromatography, yields of the 3- substituted indoles ranged from 42-98%.  相似文献   

2.
Vieira TO  Meaney LA  Shi YL  Alper H 《Organic letters》2008,10(21):4899-4901
Tandem palladium-catalyzed N,C-coupling/carbonylation, under 10 atm of carbon monoxide and at 110 degrees C, is a novel and efficient method for the preparation of 2-carboxyindoles. The catalyst system tolerates a variety of functional groups, and the noted indoles were obtained in good isolated yields.  相似文献   

3.
A novel synthesis of 2-halo-3-carboxyindoles from 2-(2,2-dihalovinyl)anilines was discovered. Reaction conditions and substrate applicability were studied. Optimally, the reaction takes only minutes when these substrates are heated in DMSO at 120 °C in the presence of cesium carbonate. However, the reaction is robust and takes place at a wide range of temperatures, is tolerant of aqueous reaction conditions, and can be performed in a variety of polar solvent/carbonate base combinations—where the limiting factor is base solubility. A wide range of substituents is tolerated on the 2-(2,2-dihalovinyl)anilines, and yields are generally high, requiring only acidic aqueous work-up to obtain pure products. No catalyst is required for the transformation. The mechanism is believed to involve initial formation of an alkynyl bromide intermediate followed by ring closure and carbon dioxide trapping, leading to product formation.  相似文献   

4.
Normal melanocytes produce specialized subcellular organelles called melanosomes within which the biochemical processes of melanogenesis occurs. During sunlight-induced melanogenesis, the melanocyte-specific enzyme tyrosinase catalyzes the oxidative polymerization of 3,4-dihydroxyphenyl-alanine (DOPA) to melanin. Nucleophilic addition of cysteine to tyrosinase-generated dopaquinone leads to the formation of cysteinyldopas, precursors of pheomelanin and excreted by-products of eumelanogenesis. Under conditions of low sulfhydryl content, dopaquinone undergoes a 1,4 intramolecular cycloaddition to yield, after further oxidation, 5,6-dihydroxyindoles and/or 5,6-dihydroxy-2-carboxyindoles. These indolic melanogenic intermediates and their O-methylated metabolites, like cysteinyldopas, are excreted by actively pigmenting as well as dormant melanocytes. Indeed, it has been determined that in humans, the serum and urine concentrations of these melanogenic metabolites increase dramatically following exposure to sunlight, UVA (315-400 nm), UVB (290-315 nm) exposure, as well as during PUVA therapy and in melanoma patients, and thus have proved to be excellent biochemical markers of normal and pathological melanocyte function. While controlled light exposure or PUVA therapy generally lead to 100-300% increases in 5-S-cysteinyldopa (5SCD) and 5-methoxy-6-hydroxyindole-2-carboxylic acid (6HMICA) serum levels (normal concentration about 4–16 nmol l-1), the local concentrations in the skin and especially in the actively pigmenting melanocyte may be as high as 200 μM. Evidence is presented to document that a number of catecholic melanin precursors, including cysteinyldopas and dihydroxyindoles, are photochemically unstable in the presence of biologically relevant ultraviolet radiation (i.e. wavelengths ± 300 nm). Initial photochemical processes involve free radical production; continued photolysis yields polymeric photoproducts. Radicals produced during melanogenic metabolite photolysis have been identified by ESR spin trapping, laser flash photolysis and pulse radiolysis techniques and include hydrated electrons (eaq), hydrogen atoms (H'), hydroxyl radicals (OH), semiquinones, aryl thiyl (ArS), and alanyl carbon-based radicals. In vitro investigations of the potential photobiological significance of these reactions have demonstrated photolysis of cysteinyldopas may lead to photoinitiated DNA binding and single strand break induction. The above mentioned radical species may also damage proteins and initiate lipid peroxidation. Definitive evidence for the occurrence of these phototoxic reactions in vivo is currently unavailable, however our in vitro studies suggest a possible role for melanogenic metabolite photolysis in acute and chronic solar responses of human skin.  相似文献   

5.
The reaction of the open bioctahedral form of Re(2)Cl(4)(&mgr;-dppm)(2)(CO)(CNXyl) (1), where XylNC = 2,6-dimethylphenyl isocyanide, with TlO(3)SCF(3) in the presence of acetonitrile proceeds with retention of stereochemistry at the dirhenium unit to afford the complex [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(NCCH(3))]O(3)SCF(3) (3). The single-crystal X-ray structure determination of 3 shows that a Re&tbd1;Re bond is retained (the Re-Re distance is 2.378(3) ?) and that it is the chloride ligand trans to the XylNC ligand of 1 which is labilized. Complex 1 reacts with TlO(3)SCF(3) in a noncoordinating solvent to produce the unsymmetrical complex [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)]O(3)SCF(3) (2), through loss of this same chloride ligand of 1 and CO transfer from the adjacent Re center. The acetonitrile ligand of 3 is very labile and is readily displaced by XylNC and t-BuNC, with retention of stereochemistry, to produce complexes of stoichiometry [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(CNR)]O(3)SCF(3) (R = Xyl, 4a; R = t-Bu, 4b). In a noncoordinating solvent, the nitrile ligand of 3 is lost and 2 is formed following CO transfer; this conversion is reversed upon the reaction of 2 with acetonitrile. When 3 is treated with CO, the acetonitrile ligand is again displaced, but in this instance the reaction is accompanied by a structure change to produce an edge-sharing bioctahedral complex of the type [Re(2)(&mgr;-CO)(&mgr;-Cl)(&mgr;-dppm)(2)Cl(2)(CO)(CNXyl)]O(3)SCF(3) (5).  相似文献   

6.
On irradiating the complex cis-[RuCl(2)(mPTA)(4)](CF(3)SO(3))(4) (2) with near UV light at room temperature, (OC-6-13)-[RuCl(2)(mPTA)(3)(H(2)O)](CF(3)SO(3))(3) (3) was obtained. Complex 3 is the product of the substitution in 2 of one mPTA by a H(2)O molecule and the rearrangement from cis to trans of the two chlorides. The selective photo-reaction of 2 is produced with radiation of 300 < λ < 400 nm or with λ = 367 nm in 50 min (Φ(367 nm) (D(2)O) = 0.18 ± 0.01). The reaction is not reversible with visible light. The transformation of 2 into 3 is not dependent on the pH but only on the radiation used. Reaction of 3 with NaCl leads to (OC-6-21)-[RuCl(3)(mPTA)(3)](CF(3)SO(3))(2) (4) which could be directly obtained by irradiation of 2 with λ = 367 nm in water and 5 eq. of NaCl (Φ(367 nm) (D(2)O) = 0.17 ± 0.01). Complex 4 turns slowly to 2 in water with 1 eq. of mPTA under light of λ > 416 nm. Complete conversion of 4 into 2 was achieved after more than one day. All complexes were characterized by elemental analysis, IR and NMR spectroscopy, and 2, 3 and 4 by single crystal X-ray determination. An easy synthesis for the ligand mPTA(CF(3)SO(3)) is also reported.  相似文献   

7.
p-tert-Butylcalix[4]arene, [CalixBut(OH)4], reacts with Mo(PMe3)6 and W(PMe3)4(eta2-CH2PMe2)H to yield compounds of composition {[CalixBut(OH)2(O)2]M(PMe3)3H2} which exhibit unprecedented use of a C-H bond of a calixarene methylene group as a binding functionality in the form of agostic and alkyl hydride derivatives. Thus, X-ray diffraction studies demonstrate that, in the solid state, the molybdenum complex [CalixBut(OH)2(O)2]Mo(PMe3)3H2 exists as an agostic derivative with a Mo...H-C interaction, whereas the tungsten complex exists as a metallated trihydride [Calix-HBut(OH)2(O)2]W(PMe3)3H3. Solution 1H NMR spectroscopic studies, however, provide evidence that [Calix-HBut(OH)2(O)2]W(PMe3)3H3 is in equilibrium with its agostic isomer [CalixBut(OH)2(O)2]W(PMe3)3H2. Dynamic NMR spectroscopy also indicates that the [M(PMe3)3H2] fragments of both the molybdenum and tungsten complexes [CalixBut(OH)2(O)2]M(PMe3)3H2 migrate rapidly around the phenolic rim of the calixarene on the NMR time scale, an observation that is in accord with incorporation of deuterium into the methylene endo positions upon treatment of the isomeric mixture of [CalixBut(OH)2(O)2]W(PMe3)3H2 and [Calix-HBut(OH)2(O)2]W(PMe3)3H3 with D2. Treatment of {[CalixBut(OH)2(O)2]W(PMe3)3H2} with Ph2C2 gives the alkylidene complex [CalixBut(O)4]W=C(Ph)Ar [Ar = PhCC(Ph)CH2Ph].  相似文献   

8.
The chloro and azido complexes trans-[PdCl(4-C5NF4)(PiPr3)2] (3) and trans-[Pd(N3)(4-C5NF4)(PiPr3)2] (4) can be prepared by reaction of [PdF(4-C5NF4)(PiPr3)2] (2) with Et3SiCl or MeSiN3, respectively. In contrast, reactions of 2 with Ph3SiH or Me2FSiSiFMe2 give the products of reductive elimination 2,3,5,6-tetrafluoropyridine (5) or 4-(fluorodimethylsilyl)tetrafluoropyridine (6) as well as [Pd(PiPr3)2] (1). In a catalytic experiment, pentafluoropyridine can be converted with Ph3SiH into 5 in 62% yield, when 10% of 2 is employed as catalyst. Treatment of trans-[PdF(4-C5NF4)(PiPr3)2] (2) with Bu3SnCH=CH2 in THF at 50 degrees C results in the formation of [Pd(PiPr3)2] (1) and 4-vinyltetrafluoropyridine (7). Complex 2 is also active as a catalyst towards a Stille cross-coupling reaction of pentafluoropyridine with Bu3SnCH=CH2 to give 4-vinyltetrafluoropyridine (7) with a TON of 6. The molecular structure of the complex 3 has been determined by X-ray crystallography.  相似文献   

9.
The reaction of 2-phenyl- and 1-methyl-2-phenylindole with nitrogen dioxide or with nitrous acid (NaNO2-CH3COOH) in benzene leads mainly to the formation of the isonitroso and 3-nitroso indole derivatives, respectively. When reacted with nitrous acid, 1-methyl-2-phenylindole gives also the corresponding azo-bis-indole in good yields. The reaction of indole with nitrogen dioxide leads to 2-(indol-3-yl)-3H-indol-3-one as the main product together with small amounts of 2-(indol-3-yl)-3H-indol-3-oxime; whereas the major product obtained when the same indole is reacted with nitrous acid is represented by 2-(indol-3-yl)-3H-indol-3-oxime. The reaction of 3-alkyl substituted indoles with nitrogen dioxide is rather complex and results in the formation of different nitro indoles, whereas nitrosation is observed when nitrous acid is used. Crystal structures of 2-(indol-3-yl)-3H-indol-3-one and of 4-nitro-N-acetyltryptamine have been determined by X-ray analysis.  相似文献   

10.
The reagent Li(2)[7-NMe(3)-nido-7-CB(10)H(10)] reacts with [Mo(CO)(3)(NCMe)(3)] in THF-NCMe (THF = tetrahydrofuran) to give a molybdenacarborane intermediate which, upon oxidation by CH(2)[double bond]CHCH(2)Br or I(2) and then addition of [N(PPh(3))(2)]Cl, gives the salts [N(PPh(3))(2)][2,2,2-(CO)(3)-2-X-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (X = Br (1) or I (2)). During the reaction, the cage-bound NMe(3) substituent is transferred from the cage-carbon atom to an adjacent cage-boron atom, a feature established spectroscopically in 1 and 2, and by X-ray diffraction studies on several of their derivatives. When [Rh(NCMe)(3)(eta(5)-C(5)Me(5))][BF(4)](2) is used as the oxidizing agent, the trimetallic compound [2,2,2-(CO)(3)-7-mu-H-2,7,11-[Rh(2)(mu-CO)(eta(5)-C(5)Me(5))(2)]-closo-2,1-MoCB(10)H(9)] (10) is formed, the NMe(3) group being lost. Reaction of 1 in CH(2)Cl(2) with Tl[PF(6)] in the presence of donor ligands L affords neutral zwitterionic compounds [2,2,2-(CO)(3)-2-L-3-NMe(3)-closo-2,1-MoCB(10)H(10)] for L = PPh(3) (4) or CNBu(t) (5), and [2-Bu(t)C[triple bond]CH-2,2-(CO)(2)-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (6) when L = Bu(t)C[triple bond]CH. When 1 is treated with CNBu(t) and X(2), the metal center is oxidized, and in the products obtained, [2,2,2,2-(CNBu(t))(4)-2-Br-3-X-closo-2,1-MoCB(10)H(10)] (X = Br (7), I (8)), the B-NMe(3) bond is replaced by B-X. In contrast, treatment of 2 with I(2) and cyclo-1,4-S(2)(CH(2))(4) in CH(2)Cl(2) results in oxidative substitution of the cluster and retention of the NMe(3) group, giving [2,2,2-(CO)(3)-2-I-3-NMe(3)-6-[cyclo-1,4-S(2)(CH(2))(4)]-closo-2,1-MoCB(10)H(9)] (9). The unique structural features of the new compounds were confirmed by single-crystal X-ray diffraction studies upon 6, 7, 9 and 10.  相似文献   

11.
This article reports the reduction of [{2,6-iPr(2)C(6)H(3)NC(CH(3))}(2)C(6)H(3)SnCl] (1) with potassium graphite to afford a new distannyne [{2,6-iPr(2)C(6)H(3)NC(CH(3))}(2)C(6)H(3)Sn](2) (2) with a Sn-Sn bond. The most striking phenomenon of 2 is the presence of two differently coordinated Sn atoms (one is three-coordinated, the other is four-coordinated). The Sn-Sn bond length in 2 is 2.8981(9) ?, which is very close to that of a Sn-Sn single bond (2.97-3.06 ?). To elucidate the nature of the Sn-Sn bond, DFT calculation is carried out that shows there is no multiple bond character in 2. Furthermore, the reaction of 2 with white P(4) affords the tetraphosphabicylobutane derivative 3. This is the first example of gentle activation of white phosphorus by a compound with low valent Sn atoms. Note that, unlike 2, in 3 both Sn atoms are four-coordinated.  相似文献   

12.
The synthesis and magnetic properties of the compounds [HNEt(3)][Fe(2)(OMe)(Ph-sao)(2) (Ph-saoH)(2)].5MeOH (1.5MeOH), [Fe(3)O(Et-sao)(O(2)CPh)(5)(MeOH)(2)].3MeOH (2.3MeOH), [Fe(4)(Me-sao)(4)(Me-saoH)(4)] (3), [HNEt(3)](2)[Fe(6)O(2)(Me-sao)(4)(SO(4))(2)(OMe)(4)(MeOH)(2)] (4), [Fe(8)O(3)(Me-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (5), [Fe(8)O(3)(Et-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (6), and [Fe(8)O(3)(Ph-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (7) are reported (Me-saoH(2) is 2'-hydroxyacetophenone oxime, Et-saoH(2) is 2'-hydroxypropiophenone oxime and Ph-saoH(2) is 2-hydroxybenzophenone oxime). 1-7 are the first Fe(III) compounds synthesised using the derivatised salicylaldoxime ligands, R-saoH(2). 1 is prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Ph-saoH(2) in the presence of NEt(3) in MeOH; 2 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Et-saoH(2) and NaO(2)CPh in the presence of NEt(4)OH in MeOH; 3 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Me-saoH(2) and NaO(2)CCMe(3) in the presence of NEt(4)OH in MeOH; and 4 prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Me-saoH(2) in the presence of NEt(3) in MeOH. 4 is a rare example of a polynuclear iron complex containing a coordinated SO(4)(2-) ion. Compounds 5-7 are prepared by treatment of Fe(O(2)CMe)(2) with Me-saoH(2) (5), Et-saoH(2) (6), Ph-saoH(2) (7) in the presence of H(3)tea (triethanolamine) in MeOH, and represent the largest nuclearity Fe(III) clusters containing salicyladoxime-based ligands, joining a surprisingly small family of characterised octanuclear Fe complexes. Variable temperature magnetic susceptibilty measurements of 1, 3 and 5-7 reveal all five complexes possess S = 0 spin ground states; 2 possesses an S = 1/2 spin ground state, while 4 has an S = 4 +/- 1 spin ground state.  相似文献   

13.
The compounds HM(CO)4SnPh3, M = Os (10), Ru (11) are activated in the presence of Pt(PBut3)2 and Pd(PBu(t)3)2 toward the insertion of PhC2H into the M-H bond. The compounds PtOs(CO)4(SnPh3)(PBu(t)3)[mu-HCC(H)Ph], 12, and PtOs(CO)4(SnPh3)(PBu(t)3)[mu-H2CCPh], 13, were obtained from the reaction of 10 with PhC2H in the presence of Pt(PBu(t)3)2. Compounds 12 and 13 are isomers containing alkenyl ligands formed by the insertion of the PhC2H molecule into the Os-H bond at both the substituted and unsubstituted carbon atoms of the alkyne. Both compounds contain a Pt(PBu(t)3) group that is bonded to the osmium atom and a bridging alkenyl ligand that is pi-bonded to the osmium atom. The reaction of 11 with PhC2H in the presence of Pt(PBu(t)3)2 yielded the products PtRu(CO)4(SnPh3)(PBu(t)3)[mu-HC2(H)Ph], 14, and PtRu(CO)4(SnPh3)(PBut3)[mu-H2C2Ph], 15, which are also isomers similar to 12 and 13. The reaction of 11 with PhC2H in the presence of Pd(PBu(t)3)2 yielded the product PdRu(CO)4(SnPh3)(PBu(t)3)[mu-H2C2Ph], 16. Compound 16 contains a Pd(PBu(t)3) group bonded to the ruthenium atom and a bridging H2C2Ph ligand that is pi-bonded to the palladium atom. Compound 10 reacted with Pt(PBu(t)3)2 in the absence of PhC2H to yield the compound PtOs(CO)4(SnPh3)(PBu(t)3)(mu-H), 17. Compound 17 is a Pt(PBu(t)3) adduct of 10. It contains a Pt-Os bond with a bridging hydrido ligand. Compound 17 reacted with PhC2H to yield 12. Compound 12 reacted with PhC2H to yield the compound PtOs(CO)3(SnPh3)(PBu(t)3)[mu-HCC(Ph)C(H)C(H)Ph], 18. Compound 18 contains a bridging 2,4-diphenylbutadienyl ligand, HCC(Ph)C(H)C(H)Ph, that is pi-bonded to the osmium atom and sigma-bonded to the platinum atom. Fenkse-Hall molecular orbitals of 17 were calculated. The LUMO of 17 exhibits an empty orbital on the platinum atom that appears to be the most likely site for PhC2H addition prior to its insertion into the Os-H bond.  相似文献   

14.
Reaction of NaBH4 with (tBuPOCOP)IrHCl affords the previously reported complex (tBuPOCOP)IrH2(BH3) (1) (tBuPOCOP = kappa(3)-C6H3-1,3-[OP(tBu)2]2). The structure of 1 determined from neutron diffraction data contains a B-H sigma-bond to iridium with an elongated B-H bond distance of 1.45(5) A. Compound 1 crystallizes in the space group P1 (Z = 2) with a = 8.262 (5) A, b = 12.264 (5) A, c = 13.394 (4) A, and V = 1256.2 (1) A(3) (30 K). Complex 1 can also be prepared by reaction of BH3 x THF with (tBuPOCOP)IrH2. Reaction of (tBuPOCOP)IrH2 with pinacol borane gave initially complex 2, which is assigned a structure analogous to that of 1 based on spectroscopic measurements. Complex 2 evolves H2 at room temperature leading to the borane complex 3, which is formed cleanly when 2 is subjected to dynamic vacuum. The structure of 3 has been determined by X-ray diffraction and consists of the (tBuPOCOP)Ir core with a sigma-bound pinacol borane ligand in an approximately square planar complex. Compound 3 crystallizes in the space group C2/c (Z = 4) with a = 41.2238 (2) A, b = 11.1233 (2) A, c = 14.6122 (3) A, and V = 6700.21 (19) A(3) (130 K). Reaction of (tBuPOCOP)IrH2 with 9-borobicyclononane (9-BBN) affords complex 4. Complex 4 displays (1)H NMR resonances analogous to 1 and exists in equilibrium with (tBuPOCOP)IrH2 in THF solutions.  相似文献   

15.
The RhCl(3)·3H(2)O/PPh(3)/nBu(4)PI catalytic system for the hydroamination of ethylene by aniline is shown to be thermally stable by a recycle experiment and by a kinetic profile study. The hypothesis of the reduction under catalytic conditions to a Rh(I) species is supported by the observation of a high catalytic activity for complex [RhI(PPh(3))(2)](2). New solution equilibrium studies on [RhX(PPh(3))(2)](2) (X = Cl, I) in the presence of ligands of relevance to the catalytic reaction (PPh(3), C(2)H(4), PhNH(2), X(-), and the model Et(2)NH amine) are reported. Complex [RhCl(PPh(3))(2)](2) shows broadening of the (31)P NMR signal upon addition of PhNH(2), indicating rapid equilibrium with a less thermodynamically stable adduct. The reaction with Et(2)NH gives extensive conversion into cis-RhCl(PPh(3))(2)(NHEt(2)), which is however in equilibrium with the starting material and free Et(2)NH. Excess NHEt(2) yields a H-bonded adduct cis-RhCl(PPh(3))(2)(Et(2)NH)···NHEt(2), in equilibrium with the precursors, as shown by IR spectroscopy. The iodide analogue [RhI(PPh(3))(2)](2) shows less pronounced reactions (no change with PhNH(2), less extensive addition of Et(2)NH with formation of cis-RhI(PPh(3))(2)(NHEt(2)), less extensive reaction of the latter with additional Et(2)NH to yield cis-RhI(PPh(3))(2)(Et(2)NH)···NHEt(2). The two [RhX(PPh(3))(2)](2) compounds do not show any evidence for addition of the corresponding X(-) to yield a putative [RhX(2)(PPh(3))(2)](-) adduct. The product of C(2)H(4) addition to [RhI(PPh(3))(2)](2), trans-RhI(PPh(3))(2)(C(2)H(4)), has been characterized in solution. Treatment of the RhCl(3)·3H(2)O/PPh(3)/nBu(4)PI/PhNH(2) mixture under catalytic conditions yields mostly [RhCl(PPh(3))(2)](2), and no significant halide exchange, demonstrating that the promoting effect of iodide must take place at the level of high energy catalytic intermediates. The equilibria have also been investigated at the computational level by DFT with treatment at the full QM level including solvation effects. The calculations confirm that the bridge splitting reaction is slightly less favorable for the iodido derivative. Overall, the study confirms the active role of rhodium(I) species in ethylene hydroamination catalyzed by RhCl(3)·3H(2)O/PPh(3)/nBu(4)PI and suggest that the catalyst resting state is [RhCl(PPh(3))(2)](2) or its C(2)H(4) adduct, RhCl(PPh(3))(2)(C(2)H(4)), under high ethylene pressure.  相似文献   

16.
Direct variable reaction coordinate transition state theory (VRC-TST) rate coefficients are reported for the (3)CH(2) + OH, (3)CH(2) + (3)CH(2), and (3)CH(2) + CH(3) barrierless association reactions. The predicted rate coefficient for the (3)CH(2) + OH reaction (approximately 1.2 x 10(-10) cm(3) molecule(-1) s(-1) for 300-2500 K) is 4-5 times larger than previous estimates, indicating that this reaction may be an important sink for OH in many combustion systems. The predicted rate coefficients for the (3)CH(2) + CH(3) and (3)CH(2) + (3)CH(2) reactions are found to be in good agreement with the range of available experimental measurements. Product branching in the self-reaction of methylene is discussed, and the C(2)H(2) + 2H and C(2)H(2) + H2 products are predicted in a ratio of 4:1. The effect of the present set of rate coefficients on modeling the secondary kinetics of methanol decomposition is briefly considered. Finally, the present set of rate coefficients, along with previous VRC-TST determinations of the rate coefficients for the self-reactions of CH(3) and OH and for the CH(3) + OH reaction, are used to test the geometric mean rule for the CH(3), (3)CH(2), and OH fragments. The geometric mean rule is found to predict the cross-combination rate coefficients for the (3)CH(2) + OH and (3)CH(2) + CH(3) reactions to better than 20%, with a larger (up to 50%) error for the CH(3) + OH reaction.  相似文献   

17.
Mixtures of [Ph(3)PNPPh(3)](+)Cl(-) with CuBr(2) (or CuBr(2)+CuCl(2)) in ethanol/dichloromethane yield crystals containing three-coordinate copper(II) with mixed chloride and bromide ligands, namely [Ph(3)PNPPh(3)](+)[CuCl(0.9)Br(2.1)](-) (1) and [Ph(3)PNPPh(3)](+)[CuCl(2.4)Br(0.6)](-) (2). The trigonal-planar coordination of copper(II) is angularly distorted but unambiguous, as there is no other halide ligand within 6.7 A of the copper atom. Density functional theory (DFT) calculations on planar [CuClBr(2)](-) show that the energy surface for angle bending is very soft. Crystallisation in the presence of CH(3)CN yields [Ph(3)PNPPh(3)](+)[CuCl(0.7)Br(2.3)(NCCH(3))](-) (3), in which there is additional secondary coordination by NCCH(3) (Cu-N 2.44 A). DFT calculations of the potential energy surface for this secondary coordination show that it is remarkably flat (<3 kcal mol(-1) for a variation of Cu-N by 0.8 A). The crystal packing in 1, 2 and 3, which involves multiple phenyl embraces between [Ph(3)PNPPh(3)](+) ions and numerous C-H...Cl and C-H...Br motifs, is associated with intermolecular energies that are larger than the variations in intramolecular energies. For reference, the crystal structures of [Ph(3)PNPPh(3)(+)](2)[Cu(2)Cl(6)](2-) (4) and [Ph(3)PNPPh(3)(+)](2)[Cu(2)Br(6)](2-) (5) are described. We conclude 1) that three-coordinate copper(II) with monatomic halide ligands, although uncommon, can be regarded as normal, 2) that steric control by ligands is not necessary to enforce three-coordination, 3) that a hydrophobic aryl environment stabilises [Cu(Cl/Br)(3)](-), and 4) that the energy change in the transition from three- to four-coordinate copper(II) is very small (ca 5 kcal mol(-1)).  相似文献   

18.
Hydrothermal reactions in the system of Ni(II), 1,3,5-benzenetricarboxylic acid (btcH3), and 4,4'-bipyridine (bpy) with or without naphthalene produced three new coordination polymers, [Ni2(bpy)3(btcH)2.(H2O)].(H2O) (2), [Ni2(bpy)2(btcH)2].(C10H8)3 (3), and Ni(bpy)(btcH2)2 (4), in addition to previously reported [Ni2(bpy)2(btcH)2].(C10H8)(0.75).H2O (1). Polymer 2 is the only product when naphthalene is absent in the reaction, and it is composed of 2D layers of coordination polymers with guest water molecules between them. When naphthalene is added to the system, compounds 1, 3, or 4 are formed depending on composition. Compound 3 has a 3D framework structure with naphthalene guests, and 4 has a 1D chainlike structure with no guest. Details of the synthesis condition and crystal structures of each compound are discussed. Crystallographic data: 2, C2/c, a = 22.500(3) A, b = 20.053(3) A, c = 19.625(3) A, beta = 99.314(3) degrees ; 3, P2(1)/c, a = 11.248(2) A, b = 16.801(4) A, c = 14.945(3) A, beta = 103.732(4) degrees ; 4, C2/c, a = 10.692(2) A, b = 11.114(3) A, c = 21.962(5) A, beta = 106.268(11) degrees.  相似文献   

19.
A series of linear coordination polymers, metallacycles of cadmium(II) and mercury(II) of flexible carboxylic acid ligands, RCH{3-CH(3)-,5-CH(3)-,6-(-OCH(2)CO(2)H)C(6)H(2)}(2), (when R = C(6)H(5), (H(2)L(1)); 2-NO(2)C(6)H(4)- (H(2)L(2)) and 3-NO(2)C(6)H(4)- (H(2)L(3))) are synthesized and characterized. [CdL(1) (py)(3)](n)·3nH(2)O (py = pyridine) is a linear coordination polymer, whereas [CdL(2)(py)(CH(3)OH)](2)·CH(3)OH is a dinuclear complex of cadmium with a Cd(2)O(2) type of core. The latter is obtained from reaction of cadmium(II) acetate with H(2)L(2) in methanol followed by reaction with pyridine. A similar reaction of cadmium(II) acetate with H(2)L(2) in dimethylformamide results in the formation of a cadmium metallacycle, namely [CdL(2) (py)(2)(H(2)O)](2)·H(2)O. The H(2)L(3) reacted with cadmium(II) acetate in the presence of pyridine to form a metallacycle [CdL(3)(py)(2)(H(2)O)](2)·3H(2)O. The ligand H(2)L(2) form mercury(II) metallacycle [HgL(2)(4-mepy)(2)](2) in the presence of 4-methylpyridine (4-mepy) and the ligand H(2)L(3) forms metallacycle [HgL(3)(3-mepy)(2)](2)·DMF in the presence of 3-methylpyridine (3-mepy). The potassium salts of H(2)L(1) and H(2)L(2) were found to be coordination polymers and these potassium coordination polymers were structurally characterized.  相似文献   

20.
Reactions of coordinatively unsaturated Ru[N(Ph2PQ)2]2(PPh3) (Q = S (1), Se (2)) with pyridine (py), SO2, and NH3 afford the corresponding 18e adducts Ru[N(Ph2PQ)2]2(PPh3)(L) (Q = S, L = NH3 (5); Q = Se, L = py (3), SO2 (4), NH3 (6)). The molecular structures of complexes 2 and 6 are determined. The geometry around Ru in 2 is pseudo square pyramidal with PPh3 occupying the apical position, while that in 6 is pseudooctahedral with PPh3 and NH3 mutually cis. The Ru-P distances in 2 and 6 are 2.2025(11) and 2.2778(11) A, respectively. The Ru-N bond length in 6 is 2.185(3) A. Treatment of 1 or 2 with substituted hydrazines L or NH2OH yields the respective adducts Ru[N(Ph2PQ)2]2(PPh3)(L) (Q = S, L = NH2NH2 (12), t-BuNHNH2 (14), l-aminopiperidine (C5H10NNH2) (15); Q = Se, L = PhCONHNH2 (7), PhNHNH2 (8), NH2OH (9), t-BuNHNH2 (10), C5H10NNH2 (11), NH2NH2 (13)), which are isolated as mixtures of their trans and cis isomers. The structures of cis-14 and cis-15 are characterized by X-ray crystallography. In both molecular structures, the ruthenium adopts a pseudooctahedral arrangement with PPh3 and hydrazine mutually cis. The Ru-N bond lengths in cis-14.CH2Cl2 and cis-15 are 2.152(3) and 2.101(3) A, respectively. The Ru-N-N bond angles in cis-14.CH2Cl2 and cis-15 are 120.5(4) and 129.0(2) degrees, respectively. Treatment of 1 with hydrazine monohydrate leads to the isolation of yellow 5 and red trans-Ru[N(Ph2PS)2]2(NH3)(H2O) (16), which are characterized by mass spectrometry, 1H NMR spectroscopy, and elemental analyses. The geometry around ruthenium in 16 is pseudooctahedral with the NH3 and H2O ligands mutually trans. The Ru-O and Ru-N bond distances are 2.118(4) and 2.142(6) A, respectively. Oxidation reactions of the above ruthenium hydrazine complexes are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号