首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Optical, magnetic, and magneto-optical properties have been investigated for the α-Fe2O3-doped transparent glasses irradiated with an infrared fs laser and subsequently annealed. The values of the saturation magnetization at room temperature for the irradiated glasses were increased compared with the as-prepared samples, which is due to the precipitation of the ferrimagnetic ferrite nanoparticles (NPs). By adding further dopants as precursors of plasmonic metals, Au or Al NPs were space-selectively precipitated together with the ferrite NPs in a confined region after irradiation and thermal annealing. In the case of the glass codoped with Al, magneto-optical Faraday effect was plasmonically enhanced and exhibited a negative distinct peak ascribed to a coupling between the ferrimagnetism of ferrite NPs and the localized surface plasmon resonance of Al NPs, while the glass, in which ferrite and Au NPs were precipitated, showed a positive enhancement of Faraday effect due to a coupling of plasmon resonance with diamagnetism of glass matrix.  相似文献   

2.
We report the spectroscopic properties of femtosecond laser-irradiated sodium-alumino-borate glass doped with silver and gold ions. We precipitated gold and silver nanoparticles by laser irradiation and annealing at 400°C for 30 min. The irradiation and annealing treatment produced different absorption and emission characteristics in Au3+ doped and Au3+, Ag+ codoped glasses, and the possible mechanisms of the observed results are discussed. The size of the nanoparticles was estimated by TEM and absorption band analysis.  相似文献   

3.
We have demonstrated spatially selective modification of the magnetic properties of transparent iron-oxide-doped glass by femtosecond- (fs-) laser irradiation and subsequent annealing. A near-infrared fs-laser beam with a wavelength of 775 nm was focused 1 mm below the surfaces of glass samples. This produces absorption peaks due to the formation of hole-trap centers in the irradiated region. Transparency was recovered after annealing at 450°C. A ferrimagnetic component was observed in the M–H curve even at room temperature, whereas the diamagnetic component dominated in the M–H curve of the as-prepared glass sample. This indicates that fs-laser irradiation enhanced the magnetization in the irradiated area. The irradiated and annealed glass sample also exhibited superparamagnetic blocking in the temperature dependence of the magnetization with a blocking temperature higher than room temperature. This change in magnetism is presumably due to local crystallization of ferrimagnetic nanoparticles, such as magnetite, induced by fs-laser irradiation and annealing. The magnetic and optical properties of glass that had been annealed but not irradiated by a fs-laser beam remained unchanged.  相似文献   

4.
We report the preparation of multiferroic BiFeO3 thin films on ITO coated glass substrates through sol-gel spin coating method followed by thermal annealing and their modification by swift heavy ion (SHI) irradiation. X-ray diffraction and Raman spectroscopy studies revealed amorphous nature of the as deposited films. Rhombohedral crystalline phase of BiFeO3 evolved on annealing the films at 550°C. Both XRD and Raman studies indicated that SHI irradiation by 200 MeV Au ions result in fragmentation of particles and progressive amorphization with increasing irradiation fluence. The average crystallite size estimated from the XRD line width decreased from 38 nm in pristine sample annealed at 550°C to 29 nm on irradiating these films by 200 MeV Au ions at 1 × 1011 ions cm−2. Complete amorphization of the rhombohedral BiFeO3 phase occurs at a fluence of 1 × 1012 ions.cm−2. Irradiation by another ion (200 MeV Ag) had the similar effect. For both the ions, the electronic energy loss exceeds the threshold electronic energy loss for creation of amorphized latent tracks in BiFeO3.  相似文献   

5.
Qiu J  Jiang X  Zhu C  Inouye H  Si J  Hirao K 《Optics letters》2004,29(4):370-372
We report on the optical properties of a structurally modified silicate glass doped with Au ions. The area in the vicinity of the focal point of an 800-nm femtosecond laser in a glass sample became gray as a result of the formation of color centers after laser irradiation and turned red because of precipitation of Au nanoparticles after further annealing at 550 degrees C for 30 min. When the glass was excited by UV light at 365 nm, yellowish-white and orange-yellow emissions were observed in the laser-irradiated and the Au-nanoparticle-precipitated area, respectively. An optical Kerr shutter experiment showed that the Au nanoparticle-precipitated glass had an ultrafast nonlinear optical response, and the third-order nonlinear susceptibility was estimated to be approximately 10(-11) esu.  相似文献   

6.
We report on space-selective co-precipitation of silver and gold nanoparticles in Ag+, Au3+ co-doped silicate glasses by irradiation of femtosecond laser pulses and subsequent annealing at high temperatures. The color of the irradiated area in the glass sample changed from yellow to red with the increase of the annealing temperature. The effects of average laser power and annealing temperature on precipitation of the nanoparticles were investigated. A reasonable mechanism was proposed to explain the observed phenomena.  相似文献   

7.
Nanocrystalline V2O5 films have been deposited on glass substrates at 300°C substrate temperature using thermal evaporation technique and were subjected to thermal annealing at different temperatures 350, 400, and 550°C. X-ray diffraction (XRD) spectra exhibit sharper and broader characteristic peaks respectively indicating the rearrangement of nanocrystallite phases with annealing temperatures. Other phases of vanadium oxides started emerging with the rise in annealing temperature and the sample converted completely to VO2 (B) phase at 550°C annealing. FESEM images showed an increase in crystallite size with 350 and 400°C annealing temperatures followed by a decrease in crystallite size for the sample annealed at 550°C. Transmission spectra showed an initial redshift of the fundamental band edge with 350 and 400°C while a blue shift for the sample annealed at 550°C, which was in agreement with XRD and SEM results. The films exhibited smart window properties as well as nanorod growth at specific annealing temperatures. Apart from showing the PL and defect related peaks, PL studies also supported the observations made in the transmission spectra.  相似文献   

8.
A large enhancement of the Faraday rotation, which is associated with localized surface plasmon resonance (LSPR), was obtained in a sample with Au nanoparticles embedded in a Bi-substituted yttrium iron garnet (Bi:YIG) film. On a quartz substrate, Au nanoparticles were formed by heating an Au thin film, and a Bi:YIG film was then deposited on them. A sample containing the Au nanoparticles produced by 1000 °C heating showed a resonant attenuation with narrower bandwidth in the transmission spectrum than nanoparticles of other samples formed by low-temperature heating. The sharp resonant Faraday rotation angle was 4.4 times larger than the estimated intrinsic Bi:YIG film at the LSPR wavelength; the angular difference was 0.14°. A discrepancy in the bandwidth between the transmission attenuation and the resonant Faraday rotation is discussed.  相似文献   

9.
Silicon carbide (SiC) single crystals with the 6H polytype structure were irradiated with 4.0-MeV Au ions at room temperature (RT) for increasing fluences ranging from 1?×?1012 to 2?×?1015 cm?2, corresponding to irradiation doses from ~0.03 to 5.3 displacements per atom (dpa). The damage build-up was studied by micro-Raman spectroscopy that shows a progressive amorphization by the decrease and broadening of 6H-SiC lattice phonon peaks and the related growth of bands assigned to Si–Si and C–C homonuclear bonds. A saturation of the lattice damage fraction deduced from Raman spectra is found for ~0.8?dpa (i.e. ion fluence of 3?×?1014 cm?2). This process is accompanied by an increase and saturation of the out-of-plane expansion (also for ~0.8?dpa), deduced from the step height at the sample surface, as measured by phase-shift interferometry. Isochronal thermal annealing experiments were then performed on partially amorphous (from 30 to 90%) and fully amorphous samples for temperatures from 200 °C up to 1500 °C under vacuum. Damage recovery and densification take place at the same annealing stage with an onset temperature of ~200 °C. Almost complete 6H polytype regrowth is found for partially amorphous samples (for doses lower than 0.8 dpa) at 1000 °C, whereas a residual damage and swelling remain for larger doses. In the latter case, these unrelaxed internal stresses give rise to an exfoliation process for higher annealing temperatures.  相似文献   

10.
Nanoscale writing of Cu nanoparticles in glasses is introduced using focused electron irradiation by transmission electron microscopy. Two types of copper borosilicate glasses, one with high and another with low Cu loading, have been tested at energies of 200–300 keV, and formation of Cu nanoparticles in a variety of shapes and sizes using different irradiation conditions is achieved. Electron energy loss spectroscopy analysis, combined with high-resolution transmission electron microscopy imaging, confirmed the irradiation-induced precipitated nanoparticles as metallic, while furnace annealing of the glass triggered dendrite-shaped particles of copper oxide. Unusual patterns of nanoparticle rings and chains under focused electron beam irradiation are also presented. Conclusively, electron beam patterning of Cu-loaded glasses is a promising alternative route to well-established femtosecond laser photoreduction of Cu ions in glass.  相似文献   

11.
Fine Co and Pt nanoparticles are nucleated when a silica sample is implanted with 400 keV Co+ and 1370 keV Pt+ ions. At the implanted range, Co and Pt react to form small Co x Pt(1?x) nanoparticles during Si+ ion irradiation at 300 °C. Thermal annealing of the pre-implanted silica substrate at 1000 °C results in the formation of spherical nanoparticles of various sizes. When irradiated with Si+ ions at 300 °C, particles in the size range of 5–17 nm undergo rod-like shape transformation with an elongation in the direction of the incident ion beam, while those particles in the size range of 17–26 nm turn into elliptical shape. Moreover, it is suspected that very big nanoparticles (size >26 nm) decrease in size, while small nanoparticles (size <5 nm) do not undergo any transformation. During Si+ ion irradiation, the crystalline nature of the nanoparticles is preserved. The results are discussed in the light of the thermal spike model.  相似文献   

12.
In the given present study, the effect of pre-irradiation heat treatment at 500 and 600 °C on the glow peaks of synthetic quartz was examined as a function of annealing time to obtain an optimum annealing procedure. It was observed that the annealing time is not a strongly sensitive parameter to change the intensities of glow peaks. On the other hand, the intensities of glow peaks between room temperature (RT) and 200 °C were continuously increased during successive readings after heat treatments. Moreover, the intensities of glow peaks above 250 °C have good stabilities. The obtained repeatability of a glow peak at ~320 °C over 10 cycles is within 5% after the application of annealing at 600 °C for 1 h. The general thermoluminescent dosimetric characteristics of synthetic quartz, such as the dose–response, signal fading as a function of storage time, and reusability were also tested using the annealing condition at 600 °C for 1 h. It was observed that dose-response behaviours of all glow peaks are similar to each other. They first follow linear part and then saturated at different dose levels. Peak 1 completely disappeared after 1 month storage in the dark room at RT. On the other hand, the intensity of peaks 2+3 was approximately reduced to 15% of its original value whereas the other peaks (P4–P5) were not sufficiently affected during this period.  相似文献   

13.
The gettering behavior of 1 MeV?C implantation induced defects for Au (1.5 MeV, 2.2×1015 cm-2), implanted into FZ Si(111), has been investigated using Rutherford backscattering spectrometry and cross-sectional transmission electron microscopy. The gettering efficiency of the C implanted layer has been studied as a function of C dose, annealing temperature and time. For a C dose of 2×1016 cm-2, a 2 h anneal at 950 °C has been found to result in a gettering efficiency going beyond ?90%. Thermal stability of the gettered Au in the C implanted layer has subsequently been investigated over a temperature range of 950–1150 °C using isochronal annealing. The gettered amount has been found to be stable up to 1050 °C beyond which there is a release. We have observed nanovoids in the C implanted layer surrounded by ?-SiC precipitates along with patches of a-SiC. Up to about 1050 °C, these nanovoids act as efficient gettering centers beyond which they seem to release the trapped Au. Four distinct regimes in annealing temperature with different mechanisms for Au gettering have been observed.  相似文献   

14.
Abstract

MgO single crystals implanted with Au+ ions (180 keV, 6 1016-1017 ions cm?2) and annealed at temperatures between 25°C and 1100°C, have been analysed—by optical spectrophotometry—by Rutherford back-scattering (to confirm the effective presence and to study the distribution profile of Au atoms), and by TEM and X-ray diffraction (to identify the phases precipitated by thermal treatment).

Thermal annealing between 550°C and 1100°C produced an optical absorption band located between 565 nm and 600 nm. This band can be attributed to a fee Au precipitate with diameter varying from 50 to 200 Å. Larger metallic colloids 1000 Å are in simple orientation with the matrix.

Annealing at temperatures higher than 500°C produces a supplementary optical absorption located at 425 nm. This band can be attributed to Au plasma resonance.

After annealing for 15 min at 1100°C, a new phase is detected by X-ray diffraction and TEM and identified as Au3Mg alloy with hexagonal structure.  相似文献   

15.
Thermoluminescence (TL), optical absorption (OA), electron spin resonance (ESR) and their relation to point defects in spessartine have been investigated. The TL glow curve presented four peaks at 150, 220, 260 and 335 °C. The 150 and 335 °C TL peaks growth curves presented a linear growth with radiation dose up to about 400 Gy, supralinearity above this dose, and saturation around 800–1000 Gy. The OA spectrum presented allowed spin transition bands due to Fe3+ and Mn2+ in dodecahedral environment. Absorption bands due to ultraviolet charge transfer of Fe3+ in octahedral and tetrahedral positions were also observed. Two ESR, a strong one around g?~?2 due to Fe3+ in octahedral position, and another weaker one at g?~?4 due to Fe3+ in tetrahedral position, have been detected. The effect of high temperature annealing (600–900 °C) before irradiation was also investigated.  相似文献   

16.
Bilayer CeO2/TiO2 films with high-k dielectric property were prepared by rf magnetron sputtering technique at room temperature. Effect of annealing treatment on resistive switching (RS) properties of bilayer CeO2/TiO2 films in O2 ambient at different temperature in the range of 350–550 °C was investigated. Our results revealed that the bilayer films had good interfacial property at 500 °C and this annealing temperature is optimum for different RS characteristics. Results showed that bilayer CeO2/TiO2 film perform better uniformity and reliability in resistive switching at intermediate temperature (i.e. 450 °C and 500 °C) instead of low and high annealing temperature (i.e. 350 °C and 550 °C) at which it exhibits poor crystalline structure with more amorphous background. Less Gibbs free energy of TiO2 as compared to CeO2 results in an easier re-oxidation of the filament through the oxygen exchange with TaN electrode. However, the excellent endurance property (>2500 cycles), data retentions (105 s) and good cycle-to-cycle uniformity is observed only in 500 °C annealed devices. The plots of cumulative probability, essential memory parameter, show a good distribution of Set/Reset voltage.  相似文献   

17.
Crystal growth and the magnetic properties of bismuth substituted yttrium iron garnet (Bi-YIG) nanoparticles were studied with particular focus on the bismuth composition dependence of the magnetic properties of the particles and the effects of annealing on the garnet phase formation. The Bi-YIG nanoparticles of 47–67 nm in size can be chemically synthesized when they are annealed at 650–850 °C. Both the lattice constant and the magnetization of the garnet nanoparticles linearly increase when the bismuth composition in the Bi-YIG particles increases. We have found that chemically synthesized nanoparticles transform from the amorphous to the garnet phase when annealed at temperatures below 650 °C, while the onset of magnetic moment of iron in the garnet nanoparticles is observed slightly above 650 °C. According to Mössbauer effect measurements, the hyperfine fields of 57Fe at the tetrahedral and octahedral sites in the garnet are 39 and 48 T, respectively.  相似文献   

18.
We report on spatially selective change of magnetism from paramagnetic to ferrimagnetic-like behaviors in normal spinel ZnFe2O4 thin film under irradiation with 780 nm femtosecond laser pulses. The distribution of Zn2+ and Fe3+ ions in the irradiated region on the film surface becomes disordered because of local heating to high temperatures, and the metastable phase of ZnFe2O4 is frozen in by the rapid quenching after irradiation, resulting in the formation of the ferrimagnetic phase. The ferrimagnetic phase reverts to the paramagnetic state by annealing at 800°C. The present technique is useful for two-dimensional patterning of magnetic thin films.  相似文献   

19.
For the hyperthermia therapy of cancer, ferrimagnetic glass ceramics are a potential candidate. Ferrimagnetic zinc-ferrite-containing bioactive glass ceramics were prepared by quenching the glass ceramics from sintering temperature. Then the samples were heated to 600°C and cooled in an aligning magnetic field of 1 Tesla to cause anisotropy. The magnetically aligned samples were compared with non-aligned samples. Vibrating sample magnetometry measurements at 10 kOe showed that the magnetic properties were enhanced by the aligning magnetic field and it led to an enhancement of the magnetic heat generation under a magnetic induction furnace operating at 500 Oe and 400 kHz for 2 min. Data showed that the maximum specific power loss and temperature increase after 2 min were 31.5 W/g and 45°C, respectively, for the aligned sample of maximum zinc-ferrite crystalline content. The glass ceramics were immersed in simulated body fluid for 3 weeks. X-ray diffraction and Fourier transform infrared and atomic absorption spectroscopy results indicated the growth of precipitated hydroxyapatite, suggesting that the ferrimagnetic glass ceramics were bioactive and could bond to living tissues in physiological environment.  相似文献   

20.
We present a method for the sintering of silver (Ag) nanoparticle thin films by millisecond pulsed laser irradiation. The microstructure of sintered thin films and sintering behaviors of nanoparticles were systematically investigated in this paper. Absorption spectra of sintered thin films showed blue-shifted surface plasmon resonances (SPR) from 500 nm to 480 nm and red-shifted from 480 nm to 550 nm when laser power was varied from 100 W to 140 W and from 140 W to 200 W, respectively. This indicates a new technique to control light absorption through joining nanoparticles with laser sintering. According to theoretical calculations based on a heat diffusion model, the melting temperature of these Ag nanoparticles was estimated to be 440 °C during laser irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号