首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
First-principles calculations have been performed on NaAlH4 using the generalized gradient approximation pseudopotential method. The predicted β-NaAlH4 (α-LiAlH4-type) structure is energetically more favorable than α-NaAlH4 for pressures over 15.9 GPa, which is apparently correlated with the experimental transition pressure 14 GPa. This transition is identified as first-order in nature with volume contractions of 1.8%. There is no pressure-induced softening behavior from our calculated phonon dispersion curves near the phase transition pressure. Based on the Mulliken population analysis, the β-NaAlH4 structure is expected to be the most promising candidate for hydrogen storage.  相似文献   

2.
The structural stability and electronic properties of four different shapes of GaSb nanowire have been studied by ab-initio method using the generalized gradient approximations. The different structures were two atom linear wire, two atom zigzag wire, four atom square wire and six atom hexagonal wire. The geometry optimization and the stability of all nanowires were investigated. We explore the minimum energy atomic configuration for all the considered shapes. We find that four atom square wire configuration has greater stability in comparison to other shapes. The analysis of density of states and band structures of optimized nanowires predicts that semiconducting nanowires may be metallic or semiconducting. The behavior entirely depends upon the geometrical structure.  相似文献   

3.
We have made a first principles study to investigate density of states, band structure, the dielectric function and absorption spectra of wurtzite Mg 0.25 Zn 0.75 O. The calculation is carried out in a-axis and c-axis strain changing in the range from 0.3 to -0.2 in intervals of 0.1. The results calculated from density of states show that the bottom of conduction band is always dominated by Zn 4s and the top of valence band is always dominated by O 2p in a-axis and c-axis strain. Zn 4s will shift to higher energy range when a-axis strain changes in the range from 0.3 to 0, and then shift to lower energy range when a-axis strain changes in the range from 0 to -0.2. But Zn 4s will always shift to higher energy range when c-axis strain changes in the range from 0.3 to -0.2. The variations of band gap calculated from band structure and absorption spectra are also investigated, which are consistent with the results obtained from density of states. In addition, we analyse and discuss the imaginary part of the dielectric function ε 2 .  相似文献   

4.
5.
Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about −1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about −6.5 to −5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about −5.0 to −1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.  相似文献   

6.
7.
We report for the first time the complete phonon dispersion curves for the ytterbium pnictide compounds (YbN, YbP and YbAs) using a breathing shell model to establish their predominant ionic nature. The calculated results also show that this group of rare earth compounds does not show any elastic and phonon anomalies which are the characteristic features of other rare earth compounds. We emphasize the need for further Raman and neutron scattering measurements.  相似文献   

8.
应用密度泛函理论研究了合金元素Al、Zn、Mn、Zr、Ca对α-Mg合金电子结构的影响。对合金元素添加后的结构进行了优化。在稳定结构的基础上,通过对不同合金元素的形成能、态密度、布居分布、差分电荷密度的分析,认为引起合金性能变化的原因是各合金元素的电负性和原子半径的大小不同所致,对比了合金元素对材料电子结构的影响,从理论上解释了Zr、Ca强烈的合金强化、细化作用。  相似文献   

9.
Using first-principles calculations, we study the structural, mechanical and electronic properties of the layered silica nanostructures built on base of silica bilayers consisting of four- and six-membered Si–O ring (4 MR and 6 MR) units. These silica nanostructures have high stability and good flexibility comparable to graphene and can serve as a promising precursor for the fabrication of well-ordered silica nanotubes. The porous structure and wide band gap of the silica nanomaterials may find applications in gas separation, slow-release microcapsules, and catalyst supports.  相似文献   

10.
By using first-principles pseudopotential method, we investigate the structural, vibrational, and electronic properties of monolayer and bilayer honeycomb structures of group-IV elements and their binary compounds. It is found that the honeycomb structures of Si, Ge, and SiGe are buckled for stabilization, while those of binary compounds SiC and GeC containing the first row elements C are planar similar to a graphene sheet. The phonon dispersion relations and electronic band structures are very sensitive to the number of layers, the stacking order, and whether the layers are planar or buckled.  相似文献   

11.
利用第一性原理系统地研究了RbH2PO4晶格优化结构、总的和分的态密度、电荷密度分布。我们发现氧原子和Rb, H原子的杂化形成了两种离子群,在铁电相离子键和PO4四面体的耦合强度比顺电相更强。结果,通过P-O 和 H-O的距离改变电荷密度的再分布和PO4四面体的顺序旋转导致了铁电性的产生。两种类型粒子群的运动和自动成型畴壁导致了可以观测的焦热电流。  相似文献   

12.
The structural, electronic and vibrational properties of graphene oxide (GO) with varying proportion of epoxy and hydroxyl functional groups have been studied using density functional theory. The functional groups and oxygen density have an obvious influence on the electronic and vibrational properties. The dependence of band gap on associated functional groups and oxygen density shows a possibility of tuning the band gap of graphene by varying the functional groups as well as oxidation level. The absorption of high oxygen content in graphene leads to the gap opening and resulting in a transition from semimetal to semiconductor. Phonon dispersion curves show no imaginary frequency or no softening of any phonon mode throughout the Brillouin zone which confirms the dynamical stability of all considered GO models. Different groups and different oxygen density result into the varying characteristics of phonon modes. The computed results show good agreement with the experimental observations. Our results present interesting possibilities for engineering the electronic properties of graphene and GO and impact the fabrication of new electronics.  相似文献   

13.
Pseudopotentials and plane-wave basis set method is used to investigate the electronic structure and magnetic properties for state-of-the-art zinc-blende and rocksalt M N (M=K, Na) alloys. We find that these compounds exhibit half-metallic characters with an integer magnetic moment of 2.00μB. The half-metallic properties result from a fully spin-polarization of s and p states. The origin of energy gap mainly comes from the hybridization both s and p states. Total energies calculations indicate the rocksalt phase is lower in energy than the zinc-blende one. The difference of total energy are about 0.035 Ry per formula unit for KN and NaN, respectively. For these compounds, Slater-Pauling curve Mt=(Zt−4) (in μB unit) is obeyed between valence electrons and total magnetic moment. Meanwhile, we also find the preservation of half metallic characters when the lattice parameter is moderate compressed.  相似文献   

14.
Magnetic and electronic structure calculations are performed for Mn2As with antiferromagnetic (AFM), ferromagnetic (FM), and ferrimagnetic (FIM) spin ordering, using the full-potential linearized augmented plane-wave (FLAPW) method based on the generalized gradient approximation (GGA). It is shown that AFM is the magnetic ground state of Mn2As, which is in agreement with the experimental observations. At a low temperature (0 K), AFM-FIM transition is also predicted which is consistent with the previous predictions. The ground state stability of the magnetic structure of Mn2As is attributed to the nearest Mn (I) and Mn (II) antiferromagnetic interaction. The calculated magnetic moment of Mn (II) is found to be in good agreement with the neutron diffraction experiment while there is a disagreement for the magnetic moment of Mn (I). The different magnetic moments are reflected in the electronic structures of Mn2As and the exchange splitting between Mn atoms is shown to be an intra-atomic effect.  相似文献   

15.
A first-principles plane wave self-consistent method with the Ultrasoftpseudopotential scheme in the framework of density functional theory is performed to study the high pressure structural, electronic and vibrational properties of InX (X = N, P) for the zinc-blende (ZnS/B3), rock-salt (NaCl/B1) and cesium-chloride (CsCl/B2) phases. We also calculate the phase transition pressures among these different phases. Conclusions based on electronic energy band structure, phonon dispersion and phonon density of states at high pressure phases along phase transition regions are outlined.  相似文献   

16.
An ab-initio study of the effects of the quantum confinement has been performed for the first time in the ultrathin ZnS films: unpassivated, passivated and the Mn-doped ones. A self-consistent full potential linear muffin tin orbital (FP-LMTO) method has been employed. The studied films have comparatively a large thickness range of 2.7–29.7 Å. The fundamental band gap increases exponentially with decrease in the size of the quantum confinement. The Mn-doped films reveal the localized impurity-induced states within the band gap and also in the conduction band region. The intense optical transitions between the Mn-induced states will appear at about 2.1 eV which is in excellent agreement with the observed peak in the photoluminescence experiments.  相似文献   

17.
A first-principles study of the transport properties of two thiolated pentacenes sandwiching ethyl is performed. The thiolated pentacene molecule shows strong n-type characteristics when contact Ag lead because of low work function about metal Ag. A strong negative differential resistance (NDR) effect with large peak-to-valley ratio of 758% is present under low bias. Our investigations indicate that strong n- or p-type molecules can be used as low bias molecular NDR devices and that the molecular NDR effect based on molecular-level leaving not on molecular-level crossing has no hysteresis.  相似文献   

18.
高压下ZnS的电子结构和性质   总被引:3,自引:0,他引:3       下载免费PDF全文
运用密度泛函理论体系下的平面波赝势(PWP)和广义梯度近似(GGA)方法,计算研究了闪锌矿结构的ZnS晶体在不同的外界压强下的电子结构. 通过分析发现,随着外界压强的增大,晶格常数和键长在不断缩小,从S原子向Zn原子转移的电荷越来越少,Zn—S键的共价性逐渐增强,Zn原子和S原子的态密度都有不同程度的变化,而且还有向低能量移动的趋势. 当外界压强达到24GPA时,ZnS从直接带隙半导体变成间接带隙半导体,而且随着压强的增大,间接带隙逐渐变小,直接带隙逐渐增大. 关键词: 闪锌矿结构 态密度 能带结构 密度泛函理论  相似文献   

19.
基于密度泛函理论,从头计算了具有ThCr2Si2型四方晶系的稀土金属化合物Yfe2B2体相的物理特性.能量计算结果表明Yfe2B2体相处于顺磁金属态;而能带结构、态密度、布居数以及差分电荷 分布的计算结果表明Y原子的5s,5p电子具有很强的局域性;Fe原子的3d电子和B的1s,2s和2p电子强烈耦合,使得最近邻Fe原子与B原子形成了Fe—B共价键;最近邻的两个Fe原子之间由于 关键词: 稀土金属化合物 第一性原理计算 能带结构 态密度  相似文献   

20.
Ab initio calculation on B2-cadmium rare earth (RE), CdRE (RE=La, Ce and Pr) intermetallics has been performed at T=0 K with respect to their structural, electronic and thermal properties. The structural and electronic properties are derived using self-consistent tight binding linear muffin tin orbital method at ambient and at high pressure. Other properties like lattice parameter, bulk modulus, density of states, electronic specific heat coefficient, cohesive energy, heat of formation, Debye temperature and Grüneisen constant for CdRE are also estimated. The RE-f effect can be seen in CdPr in terms of variation in the density of states and opens a possibility of structural instability. A pressure induced variation of Debye temperature is also presented for three cadmium rare earth intermetallics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号