首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quasistatic approach is used to analyze the criterion of ferromagnetism for two-dimensional (2D) systems with the Fermi level near Van Hove (VH) singularities of the electron spectrum. It is shown that the spectrum of spin excitations (paramagnons) is positively defined when the interaction between electrons and paramagnons, determined by the Hubbard on-site repulsion U, is sufficiently large. Due to incommensurate spin fluctuations near the ferromagnetic quantum phase transition, the critical interaction Uc remains finite at VH filling and exceeds considerably its value obtained from the Stoner criterion. A comparison with the functional renormalization group results and mean-field approximation which yields a phase separation is also performed.  相似文献   

2.
The problem of ferromagnetism – associated with a ground state with maximal total spin – is discussed in the framework of a hard-core model, which forbids the occupancy at each site with more than one particle. It is shown that the emergence of ferromagnetism on finite square lattices crucially depends on the statistics of the particles. Fermions (electrons) lead to the well-known instabilities for finite hole densities, whereas for bosons (with spin) ferromagnetism appears to be stable for all hole densities.  相似文献   

3.
The scaling of the magnetic heat capacity in the two manganites La0.85Ag0.15MnO3 and Sm0.55Sr0.45MnO has given the critical exponents α = –0.23 and ν = 0.7433 of the heat capacity and correlation radius of the magnetic order parameter, respectively, which do not belong to any known universality class. These results cannot be attributed to chemical inhomogeneities and/or structural imperfections because the samples are of a high quality. Thus, unusual critical exponents can be associated not only with the chemical disorder and/or structural defects but also with the collective behavior of the lattice. An analogy has been revealed between the effects of the magnetic field and doping on ternary oxides of transition metals: the magnetic field affecting lattice distortions through the orientation of t2g orbitals acts as chemical doping. It seems that scaling relations are more stable than critical exponents in them. The synchronism of lattice distortions and ferromagnetism leads to a novel criticality, but their desynchronization induced by magnetostructural disorder results in the violation of scaling relations between isothermal and isomagnetic exponents. Although double-exchange systems demonstrate novel criticality, they satisfy scaling relations until the magnetic behavior is synchronized with the coherent lattice behavior in the form of cooperative Jahn–Teller distortions. Breaking of double exchange bonds leads to the formation of metamagnetic clusters with magnetic dipole–dipole interaction between them, which desynchronizes lattice distortions and ferromagnetism, resulting in the violation of scaling relations. The proposed new universality class includes diverse materials such as manganites, cobaltites, crystalline Fe–Pt and amorphous Fe–Mn alloys, and high-Tc superconductors. Unusual criticality in double-exchange systems is due to an unusual semiclassical nature of double-exchange ferromagnetism caused by real exchange, i.e., electron current through Mn3+–O–Mn4+ chains with the conservation of the spin rather than by virtual exchange as in a usual ferromagnet. Double-exchange ferromagnetism arises only because to freely itinerate, electrons orient the magnetic moments of Mn cations in a single direction.  相似文献   

4.
Spontaneous phase separation instabilities with the formation of various types of charge and spin pairing (pseudo)gaps in U>0 Hubbard model including the next nearest neighbor coupling are calculated with the emphasis on the two-dimensional (square) lattices generated by 8- and 10-site Betts unit cells. The exact theory yields insights into the nature of quantum critical points, continuous transitions, dramatic phase separation instabilities and electron condensation in spatially inhomogeneous systems. The picture of coupled antiparallel (singlet) spins and paired charged holes suggests full Bose condensation and coherent pairing in real space at zero temperature of electrons complied with the Bose-Einstein statistics. Separate pairing of charge and spin degrees at distinct condensation temperatures offers a new route to superconductivity different from the BCS scenario. The conditions for spin liquid behavior coexisting with unsaturated and saturated Nagaoka ferromagnetism due to spin-charge separation are established. The phase separation critical points and classical criticalities found at zero and finite temperatures resemble a number of inhomogeneous, coherent and incoherent nanoscale phases seen near optimally doped high-Tc cuprates, pnictides and CMR nanomaterials.  相似文献   

5.
The microscopic basis for the stability of itinerant ferromagnetism in correlated electron systems is examined. To this end several routes to ferromagnetism are explored, using both rigorous methods valid in arbitrary spatial dimensions, as well as Quantum Monte Carlo investigations in the limit of infinite dimensions (dynamical mean-field theory). In particular we discuss the qualitative and quantitative importance of (i) the direct Heisenberg exchange coupling, (ii) band degeneracy plus Hund's rule coupling, and (iii) a high spectral density near the band edges caused by an appropriate lattice structure and/or kinetic energy of the electrons. We furnish evidence of the stability of itinerant ferromagnetism in the pure Hubbard model for appropriate lattices at electronic densities not too close to half-filling and large enough U. Already a weak direct exchange interaction, as well as band degeneracy, is found to reduce the critical value of U above which ferromagnetism becomes stable considerably. Using similar numerical techniques the Hubbard model with an easy axis is studied to explain metamagnetism in strongly anisotropic antiferromagnets from a unifying microscopic point of view.  相似文献   

6.
The antiferromagnetism in Ru(2)MnGe can be suppressed by the substitution of V by Mn and ferromagnetism appears. Synchrotron-based magnetic Compton scattering experiments are used in order to investigates the role of 3d electrons in the indirect/direct exchange interactions for the appearance of ferromagnetism. A small spin moment for the itinerant electron part on the magnetic Compton profile indicates that the metallic ferromagnet Ru(2)Mn(0.5)V(0.5)Ge has a weak indirect exchange interaction between the d-like and sp-like (itinerant) electrons. This suggests that the appearance of ferromagnetism is caused by the enhancement of the direct exchange interactions between d-d electrons in the Ru(2)MnGe Heusler compound. These findings indicate that the indirect exchange interaction between itinerant electrons and localized electrons is a significant key point for the appearance of ferromagnetism in this system.  相似文献   

7.
磁性物质中冷无序能的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
王永忠  张志东 《物理学报》2002,51(2):410-414
在研究物质的磁性时,考虑了电子之间的正交换能(A1>0,导致电子自旋平行排列)和负交换能(A2<0,导致电子自旋反平行排列)两项各自的物理作用,不是简单地只以它们的代数和为判据.提出冷无序能的概念:当A1>|A2|(A=A1-|A2|>0)时,A1为有序能,A2为冷无序能;当A1<|A2|(A<0)时,A2为有序能,A1为冷无序能.物质的磁性决定于热运动能、有序能以及冷无序能之间的竞争.考虑了冷无序能导致“冷无序”的物理功能,将冷无序能变换为等效温度,在统计物理的框架内处理了铁磁性、反铁磁性转变和自旋玻璃冻结问题.A2=0的体系具有Weiss铁磁性,|A2|A1=1的体系表现自旋玻璃磁性,1>|A2|A1>0的体系同时具有铁磁性和自旋玻璃磁性,1>A1|A2|>0的体系同时具有反铁磁性和自旋玻璃磁性. 关键词: 交换能 冷无序能 铁磁性 反铁磁性 自旋玻璃  相似文献   

8.
We address the possible occurrence of ultracold atom ferromagnetism by evaluating the free energy of a spin polarized Fermi gas to second order in its interaction parameter. We find that Hartree-Fock theory underestimates the tendency toward ferromagnetism, predict that the ferromagnetic transition is first order at low temperatures, and point out that the spin coherence time of gases prepared in a ferromagnetic state is strongly enhanced as the transition is approached. We relate our results to recent experiments.  相似文献   

9.
We have used oxygen plasma assisted metal organic chemical vapor deposition along with wet chemical synthesis and spin coating to prepare CoxZn1-xO and MnxZn1-xO epitaxial and nanoparticle films. Co(II) and Mn(II) substitute for Zn(II) in the wurtzite lattice in materials synthesized by both methods. Room-temperature ferromagnetism in epitaxial Co:ZnO films can be reversibly activated by diffusing in Zn, which occupies interstitial sites and makes the material n-type. O-capped Co:ZnO nanoparticles, which are paramagnetic as grown, become ferromagnetic upon being spin coated in air at elevated temperature. Likewise, spin-coated N-capped Mn:ZnO nanoparticle films also exhibit room-temperature ferromagnetism. However, the inverse systems, N-capped Co:ZnO and O-capped Mn:ZnO, are entirely paramagnetic when spin coated into films in the same way. Analysis of optical absorption spectra reveals that the resonances Co(I)↔Co(II)+e- CB and Mn(III)↔Mn(II)+h+ VB are energetically favorable, consistent with strong hybridization of Co (Mn) with the conduction (valence) band of ZnO. In contrast, the resonances Mn(I)↔Mn(II)+e- CB and Co(III)↔Co(II)+h+ VB are not energetically favorable. These results strongly suggest that the observed ferromagnetism in Co:ZnO (Mn:ZnO) is mediated by electrons (holes). PACS 75.50.Pp  相似文献   

10.
The correlated motion of electrons in metallic ferromagnets is investigated in terms of a realistic interacting-electron model with N-fold orbital degeneracy and intra-orbital (U) and inter-orbital (J) Coulomb interactions. Correlation-induced self-energy and vertex corrections are incorporated systematically to provide a non-perturbative Goldstone-mode-preserving scheme. An effective quantum parameter [U2+(N-1)J2]/[U+(N-1)J]2 is obtained which determines, in analogy with 1/S for quantum spin systems and 1/N for the N-orbital Hubbard model, the strength of correlation-induced quantum corrections to magnetic excitations. The rapid suppression of this quantum parameter with Hund's coupling J, especially for large N, provides fundamental insight into the phenomenon of strong stabilization of metallic ferromagnetism by orbital degeneracy and Hund's coupling. Correlation effects are investigated for spin stiffness, magnon dispersion, electronic spectral function, density of states, and finite-temperature spin dynamics using realistic bandwidth, interaction, and lattice parameters for iron.  相似文献   

11.
V,Cr,Mn掺杂MoS2磁性的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
曹娟  崔磊  潘靖 《物理学报》2013,62(18):187102-187102
基于第一性原理的自旋极化密度泛函理论分别研究了过渡金属V, Cr, Mn掺杂单层MoS2的电子结构、 磁性和稳定性. 结果表明: V和Mn单掺杂均能产生一定的磁矩, 而磁矩主要集中在掺杂的过渡金属原子上, Cr单掺杂时体系不显示磁性. 进一步讨论双原子掺杂MoS2 体系中掺杂原子之间的磁耦合作用发现, Mn掺杂的体系在室温下显示出稳定的铁磁性, 而V掺杂则表现出非自旋极化基态. 形成能的计算表明Mn掺杂的MoS2体系相对V和Cr 掺杂结构更稳定. 由于Mn掺杂的MoS2 不仅在室温下可以获得比较好的铁磁性而且其稳定性很高, 有望在自旋电子器件方面发挥重要的作用. 关键词: 2')" href="#">单层MoS2 掺杂 铁磁态 第一性原理  相似文献   

12.
An ICC computation for the 14.4 keV transition in57Fe has been made using relativistic wavefunctions derived from spin polarized UHF wave functions of atomic iron. It is shown that ICC and electron density at the nucleus are proportional for polarized s electrons as has been found already for unpolarized electrons.  相似文献   

13.
Based on the density functional theory and nonequilibrium Green's function methods, we investigate the spin transport properties of the molecular junctions constructed by a homologous series of 3d transition metal(II) salophens (TM-salophens, TM = Co, Fe, Ni and Mn) sandwiched between two gold electrodes. It is found that among the four molecular junctions only Co-salophen junction can act as an efficient spin filter distinctively. The conductance through Co-salophen molecular junction is dominated by spin-down electrons. The mechanism is proposed for these phenomena.  相似文献   

14.
杨金龙  夏一达 《发光学报》1991,12(2):105-112
本文将我们提出的一种在DV-Xα计算过渡金属络合物电子结构的基础上计算光谱的方法用于激光晶体MgO:Ni2+的研究.首次从第一性原理出发,全面计算了该激光晶体的单电子能谱、总态密度、自旋极化分裂、电荷转移跃迁能量、特别是d-d跃迁多重光谱项能量和自旋一轨道耦合常数,得到了与实验值较一致的结果.  相似文献   

15.
Using spin density functional theory within the framework of the local spin density approximation with Perdew-Zunger type exchange-correlation energy, ferromagnetism in a quasi-two-dimensional electron gas (Q-2DEG) is studied. The electronic and magnetic structures of a thin film are calculated as a function of film thickness and electron density. Ferromagnetism in the Q-2DEG is found to appear at a higher electron density than in the three-dimensional electron gas. Unless a film is very thin, with decreasing electron density, a magnetic phase transition occurs from a spin-unpolarized fluid to a Wigner film with surface magnetism, in which the spin polarization localizes only in the neighborhood of surfaces. Further decreasing density induces another transition to a fully spin-polarized ferromagnetic Wigner film.  相似文献   

16.
Because of their possible applications in spintronic and optoelectronic devices, GaN dilute magnetic semiconductors (DMSs) doped by rare-earth (RE) elements have attracted much attention since the high Curie temperature was obtained in RE-doped GaN DMSs and a colossal magnetic moment was observed in the Gd-doped GaN thin film. We have systemically studied the GaN DMSs doped by RE elements (La, Ce–Yb) using the full-potential linearized augmented plane wave method within the framework of density functional theory and adding the considerations of the electronic correlation and the spin-orbital coupling effects. We have studied the electronic structures of DMSs, especially for the contribution from f electrons. The origin of magnetism, magnetic interaction and the possible mechanism of the colossal magnetic moment were explored. We found that, for materials containing f electrons, electronic correlation was usually strong and the spin–orbital coupling was sometimes crucial in determining the magnetic ground state. It was found that GaN doped by La was non-magnetic. GaN doped by Ce, Nd, Pm, Eu, Gd, Tb and Tm are stabilized at antiferromagnetic phase, while GaN doped by other RE elements show strong ferromagnetism which is suitable materials for spintronic devices. Moreover, we have identified that the observed large enhancement of magnetic moment in GaN is mainly caused by Ga vacancies (3.0μB per Ga vacancy), instead of the spin polarization by magnetic ions or originating from N vacancies. Various defects, such as substitutional Mg for Ga, O for N under the RE doping were found to bring a reduction of ferromagnetism. In addition, intermediate bands were observed in some systems of GaN:RE and GaN with intrinsic defects, which possibly opens the potential application of RE-doped semiconductors in the third generation high efficiency photovoltaic devices.  相似文献   

17.
We propose a finite block spin phenomenology for permanent magnets in which we consider an average domain as a block spin. The permanent ferromagnetism arises in two ways: (1) the ferromagnetism that occurs inside a big block spin, i.e. the intrablock ferromagnetism, and the ferromagnetism between small block spins (SBSs) in a big block spin (BBS) which can be induced by collective ferromagnetic pairing between two SBSs mediated by temperature-irreversible bosonic strains; and (2) the ferromagnetism between BBSs, i.e. the interblock ferromagnetism. The coercivity originates from temperature-irreversible strains treated as external phonons.  相似文献   

18.
Neutron and electron diffraction, electrical transport and magnetic measurements have been carried out on a newly synthesized electron doped Sr1-xCe x MnO3 (x = 0.1, 0.2, 0.3 and 0.4) system. For x=0.1, while cooling, it undergoes a first-order metal-insulator transition at 315 K which is associated with a structural transition from cubic (Pm3m) to tetragonal (I4/mcm) due to Jahn-Teller ordering () which stabilizes a chain like (C-type) antiferromagnetic ground state with . The antiferromagnetic insulator state is insensitive to an applied magnetic field of 7 T. With increase of x, while the nuclear structure at room temperature for x=0.2 and 0.3 remains tetragonal, for x=0.4 it becomes orthorhombic (Imma) where the doping electrons seem to occupy mainly the d x2-y2 symmetry. Further, the JT distortion and the antiferromagnetic interactions decrease with doping and a small negative magnetoresistance appears for . Magnetic measurements show that the dilution of antiferromagnetic interaction results into a spin glass like behaviour at low temperature for the samples with x=0.3 and 0.4. This behaviour is in contrast with the CMR properties of calcium based electron doped systems and hole doped manganites. The stability of C-type antiferromagnetic ordering in the electron doped system with large A-site cationic size may be responsible for the absence of double exchange ferromagnetism and CMR effect. Received 10 September 1999  相似文献   

19.
It is proposed that superconductors possess a hidden ‘hole core’ buried deep in the Fermi sea. The proposed hole core is a small region of the Brillouin zone (usually at the center of the zone), where the lowest energy states in the normal state reside. We propose that in the superconducting state these energy states become singly occupied with electrons of a definite spin helicity. In other words, that holes of a definite spin helicity condense from the top to the bottom of the band in the transition to superconductivity, and electrons of that spin helicity ‘float’ on top of the hole core, thus becoming highly mobile. The hole core has radius q0 = 1/2λL, with λL the London penetration depth, and the electrons expelled from the hole core give an excess negative charge density within a London penetration depth of the real space surface of the superconductor. The hole core explains the development of a spin current in the transition to superconductivity (Spin Meissner effect) and the associated negative charge expulsion from the interior of metals in the transition to superconductivity, effects we have proposed in earlier work to exist in all superconductors and to be at the root of the Meissner effect.  相似文献   

20.
马磊  黄爱群  李俊 《中国物理 B》2011,20(3):37104-037104
This paper studies the normal state properties of itinerant electrons in a toy model,which is constructed according to the model for coexisting ferromagnetism and superconductivity proposed by Suhl [Suhl H 2001 Phys.Rev.Lett.87 167007].In this theory with ferromagnetic ordering based on localized spins,the exchange interaction J between conduction electrons and localized spin is taken as the pairing glue for s-wave superconductivity.It shows that this J term will first renormalize the normal state single conduction electron structures substantially.It finds dramatically enhanced or suppressed magnetization of itinerant electrons for positive or negative J.Singlet Cooper pairing can be ruled out due to strong spin polarisation in the J > 0 case while a narrow window for s-wave superconductivity is opened around some ferromagnetic J.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号