首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly tunable electroluminescence is observed in GaAs doping superlattice (n-i-p-i crystal) at room temperature with peak energies shifted more than 600 meV below the bulk bandgap (λ > 1.55 μm). Peak efficiency is about 2 %. Tunability of the optical absorption spectrum with p-n junction bias is also demonstrated by both photoconductivity and direct transmission measurements. A change of transmission of about 9% is obtained at 0.89 μm wavelength through a 1.95 μm thick n-i-p-i crystal by varying the p-n junction bias between −0.5 V and 0.5 V.  相似文献   

2.
In this work we study the effect of nitrogen (N) and fluorine (F) doping on the electronic properties of ZrO(2) by using ab initio electronic structure calculations. Our calculations show the importance of on-site Coulomb correlation in estimating the correct band gap of ZrO(2). The N and F doping provide hole- and electron-type impurity states in the band gap closer to the top of the valence band and the bottom of the conduction band, respectively. The formation of such impurity states may be exploited in fabricating a p-n junction expected to be useful in making an ultraviolet light-emitting diode.  相似文献   

3.
Based on tight-binding approximation and a generalized Green's function method, the effect of uniaxial strain on the electron transport properties of Z-shaped graphene nanoribbon (GNR) composed of an armchair GNR sandwiched between two semi-infinite metallic armchair GNR electrodes is numerically investigated. Our results show that the increase of uniaxial strain enhances the band gap and leads to a metal-to-semiconductor transition for Z-shaped GNR. Furthermore, in the Landauer–Büttiker formalism, the current–voltage characteristics, the noise power resulting from the current fluctuations and Fano factor of strained Z-shaped GNR are explored. It is found the threshold voltage for the current and the noise power increased so that with reinforcement of the uniaxial strain parameter strength, the noise power goes from the Poisson limit to sub-Poisson region at higher bias voltages.  相似文献   

4.
By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR. The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover, B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR. This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device.  相似文献   

5.
通过反应磁控溅射在n型硅和玻璃衬底上制备了p型CuO薄膜.使用X射线衍射仪和紫外-可见光-近红外光度计研究了p型CuO薄膜的结构和光学特性,得出其平均晶粒尺寸和光学带隙分别为8 nm和1.36 eV.通过研究其电压-电流关系确定了在p型CuO薄膜和n型硅衬底之间形成了p-n结.在AM 1.5光照条件下p-CuO/n-Si电池的开路电压为0.33 V,短路电流密度为6.27 mA/cm2, 填充因数和能量转化效率分别为0.2和0.41%.  相似文献   

6.
臧鸽  黄永清  骆扬  段晓峰  任晓敏 《物理学报》2014,63(20):208502-208502
设计了一种In P基的背入射台面结构的单行载流子光探测器.通过在吸收层中采取高斯型掺杂界面及引入合适厚度和掺杂浓度的崖层,使得光探测器同时具备了高速和高饱和电流特性.理论分析表明,在光敏面为14μm2、反向偏压为2 V条件下,该器件的3 d B带宽可达58 GHz,直流饱和电流高达158 m A.在大功率光注入条件下,详细分析了光探测器带宽降低和电流饱和现象,得出能带偏移和电场坍塌是其根本原因的结论.  相似文献   

7.
采用光辅助金属有机化学汽相沉积(PA-MOCVD)法在n-SiC(6H)衬底上制备出As掺杂的p型ZnO薄膜,并制备出相应的p-ZnO:As/n-SiC异质结器件。X射线衍射(XRD)和光致发光(PL)测试表明,ZnO薄膜具有较好的结构和光学特性。电流-电压(I-V)测试结果表明,该型异质结器件具有良好的整流特性,开启电压为5.0 V,反向击穿电压约为-13 V。正向偏压下,器件的电致发光(EL)谱表现出两个分别位于紫外和可见光区域的发光峰,通过和ZnO、SiC的PL谱对照,证实异质结器件的发光峰来源于ZnO侧的辐射复合。  相似文献   

8.
Application of small voltages in the range from 0.5 V to 1 V to an originally homogeneously Fe-doped (0.5 mol-%) TiO2 semiconductor at temperatures between 700° C and 750° C caused the formation of a p-n junction within the sample. This is indicated by a change of the U-I characteristics from a symmetrical to a diode type behavior. By inversion of the polarity of the applied voltage, the p-n junction could be removed. This process is completely reversible. The results are explained by an asymmetric change in the concentration of lattice defects, which act as dopants in addition to the extrinsic dopants, caused by the application of the voltage to the sample.  相似文献   

9.
一种印刷型薄膜太阳能电池p-n结调制技术   总被引:1,自引:0,他引:1  
能带值为0.5~0.85 eV材料的稀缺是多结太阳能电池面临的一个主要挑战,本文使用非真空的机械化学法合成了能带值为0.83 eV的Cu2SnS3化合物,使用印刷技术将其制备成吸收层薄膜,并采用superstrate太阳能电池结构(Mo/Cu2SnS3/In2S3/TiO2/FTO glass)对其光伏特性进行了研究.实验表明所制备的太阳能电池短路电流密度、开路电压、填充因子和转换效率分别为12.38 mA/cm2、320 mV、0.28和1.10%.此外,为更好地满足多结太阳能电池对电流匹配的需求,本文对所制备太阳能电池的Cu2SnS3/In2S3 p-n结进行了分析.通过在p-n结界面植入一层薄的疏松缓冲层,使调制后的太阳能电池短路电流密度从最初的12.38 mA/cm2增加到了23.15 mA/cm2,相应太阳能电池转换效率从1.1%增加到了1.92%.该p-n调制技术对印刷型薄膜太阳能电池具有重要借鉴意义.  相似文献   

10.
Control of the band gap of graphene nanoribbons is an important problem for the fabrication of effective radiation detectors and transducers operating in different frequency ranges. The periodic edge-modified zigzag-shaped graphene nanoribbon (GNR) provides two additional parameters for controlling the band gap of these structures, i.e., two GNR arms. The dependence of the band gap E g on these parameters is investigated using the π-electron tight-binding method. For the considered nanoribbons, oscillations of the band gap E g as a function of the nanoribbon width are observed not only in the case of armchair-edge graphene nanoribbons (as for conventional graphene nanoribbons) but also for zigzag GNR edges. It is shown that the change in the band gap E g due to the variation in the length of one GNR arm is several times smaller than that due to the variation in the nanoribbon width, which provides the possibility for a smooth tuning of the band gap in the energy spectrum of the considered graphene nanoribbons.  相似文献   

11.
基于密度泛函第一性原理计算,系统研究了Mg12O12笼状团簇组装一维纳米线及其掺杂3d族元素体系的几何结构与电子结构。结果表明:Mg12O12团簇组装一维纳米线为非磁性半导体,带隙值为3.16 eV;掺杂Sc和V后,体系由半导体转变为金属;掺杂Ti、Cr、Mn、Fe、Co、Ni、Cu后体系仍然保持半导体特性、但带隙值明显减小,而掺杂Zn时带隙值变化不大;掺杂V、Cr、Mn、Fe、Co、Ni、Cu后纳米线具有磁性。  相似文献   

12.
侯清玉  吕致远  赵春旺 《物理学报》2014,63(19):197102-197102
目前,在V高掺杂ZnO中,当V掺杂量摩尔数为0.03125–0.04167的范围内,掺杂量越增加,电阻率越增加或越减小的两种实验结果均有文献报道. 为解决这个矛盾,本文采用密度泛函理论的第一性原理平面波超软赝势方法,构建未掺杂ZnO,V高掺杂的Zn1-xVxO (x=0.03125,0.04167) 两种超胞模型,首先,对所有体系进行几何结构优化,在此基础上,采用GGA+U的方法,计算所有体系的能带结构分布、态密度分布、吸收光谱分布. 结果表明,当掺杂量摩尔数为0.03125–0.04167的范围内,V掺杂量越增加,掺杂体系体积越增加,总能量越下降,形成能越减小,掺杂体系越稳定,相对电子浓度越减小,迁移率越减小,电导率越减小,最小光学带隙越增加,吸收光谱蓝移越显著. 计算结果与实验结果相一致. 关键词: V高掺杂ZnO 电导率 吸收光谱 第一性原理  相似文献   

13.
采用射频等离子体辅助分子束外延方法,以N2作为掺杂源,以O2作为辅助分解的气体和氧源,通过等离子体光谱的实时监测来控制掺杂源中各组分的含量,制备了p型ZnO薄膜及同质p-n结。I-V曲线显示该p-n结具有整流特性,直流驱动下获得了稳定的室温电致发光,包括位于420nm附近的发光峰和500~700nm的发光带。  相似文献   

14.
A compact conductive polythiophene (PT) film junction was prepared by potential controlled electrochemical doping after electropolymerization of thiophene. The polythiophene film was cation-doped on one side, while its other side was anion-doped, which resulted in a polythiophene p-n junction film diode. The free-standing polythiophene film junction diode was flexible and was 1.5 times stronger than aluminum metal. After treatment by a strong electric field, the polythiophene p-n junction exhibits a novel electric property like an intelligent electric switch.  相似文献   

15.
Using the fully self-consistent non-equilibrium Green?s function (NEGF) method combined with density functional theory, we investigate numerically the electronic transport property for pristine and doped crossed graphene nanoribbon (GNR) junctions. It is demonstrated that in the case of zigzag interfaces, the IV characteristics of the junction with or without doping always show semiconducting behavior, which is different from that in the case of armchair interfaces [Zhou, Liao, Zhou, Chen, Zhou, Eur. Phys. J. B 76 (2010) 421]. Interestingly, negative differential resistance (NDR) behavior can be clearly observed in a certain bias region for nitrogen-doped shoulder crossed junction. A mechanism for the NDR behavior is suggested.  相似文献   

16.
We report on field emission property from a single nanorod measured by using scanning tunnelling spectroscopy. It has been shown that field emission from nanorods of small band gap semiconductor is significantly increasing by doping. The current transport mechanism is explained using double barrier tunnel junction formalism. It is observed experimentally that the Fowler–Nordheim tunnelling mechanism is dominant and governs the transport mechanism. The transport properties of PbS nanostructures in the form of nanorod are investigated in terms of various conduction mechanism. The minimum voltage necessary for triggering Fowler–Nordheim tunnelling under the revised biased for intrinsic sample ~0.95 V and decreases to ~0.67 V for increase doping concentration up to 1.76 wt%.  相似文献   

17.
本文利用密度泛函理论,研究剪切形变下掺杂改性及不同类型缺陷对MoS2电子结构的影响。发现:剪切形变下,MoS2+P体系为相对最稳定的结构,掺杂改性相较于缺陷对模型稳定性影响更小;模型MoS2+P+Se中P-Mo键易形成共价键,而其中的Se-Mo键和MoS2+P-Mo-S模型中的P-Mo键,易形成离子键;掺杂使MoS2模型能隙变大,而缺陷使能隙减小,且S和Mo原子共缺陷的模型带隙为0;缺陷相较于掺杂改性模型,更能使Mo原子周围增加电荷聚集度,带隙值更低,更能影响或调控模型的电子结构。  相似文献   

18.
在第一性原理的基础上 ,对 1,8 二巯基芘分子的电学特性进行了理论研究 .采用了 3个Au原子构成的团簇来模拟Au表面 .首先利用密度泛函理论计算了 1,8 二巯基芘分子的电子结构及其和Au表面的相互作用 ,再利用前线轨道理论和微扰理论定量地确定了该分子和Au表面的相互作用能常数 .最后利用弹性散射格林函数法研究了该分子结的伏 安特性 .计算结果表明 ,分子中的硫原子和Au原子形成很强的共价键 .当外加偏压小于 1V时分子结存在电流禁区 ,随着偏压升高 ,分子结的电导出现平台结构 .分子结的电导特性和其电子结构密切相关 ,扩展分子轨道为电荷的迁移提供了通道 ,而局域轨道对电流贡献很小  相似文献   

19.
The thermopower and conductance in a zigzag graphene p-n junction are studied by using the nonequilibrium Green's function method combined with the tight-binding Hamiltonian. Our results show that the conductance and thermopower of the junction can be modulated by its width, the potential drop, and the applied perpendicular magnetic fields. A narrow graphene p-n junction shows insulating characteristics, and its thermopower is much larger than that of the wider one around the Dirac point. The insulating characteristic of the junction decreases as the width increases. In particular, with increasing junction width or the potential drop, the first conductance plateau is strongly enhanced and the thermopower is inverted around the Dirac point. A perpendicular magnetic field strongly suppresses the conductance and enhances the thermopower in the p-n region. The influence of edge vacancy defects on the conductance and thermopower is also discussed. Our results provide theoretical references for modulating the electronic and thermal properties of a graphene p-n junction by tuning its geometry and working conditions.  相似文献   

20.
A method is given for obtaining p-n junctions by diffusing zinc or cadmium into InP. The current-voltage characteristics of such a p-n junction at room temperature are given.In conclusion the authors would like to thank Prof. D. N. Nasledov and V. V. Galavanov for suggesting the subject and for their constant interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号