首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The field of spin hydrodynamics aims to describe magnetization dynamics from a fluid perspective. For ferromagnetic materials, there is an exact mapping between the Landau-Lifshitz equation and a set of dispersive hydrodynamic equations. This analogy provides ample opportunities to explore novel magnetization dynamics and magnetization states that can lead to potential applications that rely entirely on magnetic materials, for example, long-distance transport of information. This article provides an overview of the theoretical foundations of spin hydrodynamics and their physical interpretation in the context of spin transport. We discuss other proposed applications for spin hydrodynamics as well as our view on challenges and future research directions.  相似文献   

2.
Spin-orbit torques (SOTs) have been investigated most widely in normal metal/ferromagnet bilayers where the spin Hall effect of normal metal is a main source of spin currents. Recently, ferromagnets are found to also serve as spin-current sources through spin-orbit coupling. In this work, we theoretically investigate SOT acting on ferromagnet2 in ferromagnet1/normal metal/ferromagnet2 trilayers, which is caused by the spin Hall and spin swapping effects of ferromagnet1. Our result provides an analytical expression of SOT in the trilayers, which may be useful for quantifying the spin Hall and spin swapping effects of ferromagnets and also for designing and interpreting SOT experiments where a ferromagnet is used as a spin-current source instead of a normal metal.  相似文献   

3.
4.
We analytically obtained the Schmidt decomposition of the entangled state between the pseudo spin and the true spin in graphene with Rashba spin–orbit coupling. The entangled state has the standard form of the Bell state, where the SU(2) spin symmetry is broken. These states can be explicitly expressed as the superposition of two nonorthogonal, but mirror symmetrical spin states entangled with the pseudo spin states. Because of the closely locking between the pseudo spin and the true spin, it is found that the orbit curve in the spin-polarization parameter space for the fixed equi-energy contour around Dirac points has the same shape as the δk-contour. Due to the spin–orbit coupling that cause the topological transition in the local geometry of the dispersion relation, the new equi-energy contours around the new emergent Dirac Points can be obtained by squeezing the one around the original Dirac point. The spin texture in the momentum space around the Dirac points is analyzed under the Rashba spin–orbit interaction and it is found that the orientation of the spin polarization at each crystal momentum k is independent of the Rashba coupling strength.  相似文献   

5.
孙庆丰  谢心澄 《物理》2010,39(06):416-418
文章作者在垂直磁场作用下的铁磁石墨烯体系里预言了一种新类型的量子自旋霍尔效应.这量子自旋霍尔效应与自旋轨道耦合无关,体系也不具有时间反演不变性;但是有CT不变(C为电子-空穴变换、T为时间反演变换).由于量子自旋霍尔效应,体系的纵向电阻和自旋霍尔阻出现量子化平台.特别是,自旋霍尔阻的量子化平台有很强的抗杂质干扰能力.  相似文献   

6.
In the present work the dynamical behavior of π-electronic spin in graphene is investigated. The π-electron is under the influence of a normal uniform magnetic field and the Rashba spin–orbit coupling. Introducing a Casimir operator, we show that the governing Hamiltonian and, consequently, the time-evolution matrix is block-diagonal. We then proceed to calculate the temporal behavior of different spin components, when it is initially in-plane polarized. Our calculations show that the spin is dynamically polarized in a plane normal to the graphene sheet and follows the patterns of collapse-revivals. The dependence of amplitudes as well as the collapse-revivals’ periods on the external field and the Rashba spin–orbit coupling is also reported.  相似文献   

7.
A spin accumulation effect (SAE) is induced in a semiconductor nanoring with Rashba spin orbit interaction and pierced by a magnetic flux. We show that when the sample is not perfectly symmetric, the profile of the SAE can be highly inhomogeneous along specific orientations. In particular, we analyze the anisotropy generated in the angular profile by a finite eccentricity. We discuss the feasibility of detecting the effect with usual magneto optical techniques for a number of electrons and values of magnetic fluxes experimentally accessible.  相似文献   

8.
According to the general principle of non-equilibrium thermodynamics, we propose a set of macroscopic transport equations for the spin transport and the charge transport. In particular, the spin torque is introduced as a generalized `current density' to describe the phenomena associated with the spin non-conservation in a unified framework. The Einstein relations and the Onsager relations between different transport phenomena are established. Specifically, the spin transport properties of the isotropic non-magnetic and the isotropic magnetic two-dimensional electron gases are fully described by using this theory, in which only the macroscopic-spin-related transport phenomena allowed by the symmetry of the system are taken into account.  相似文献   

9.
Rhodium (Rh) is a 4d metal possessing a large spin orbit coupling strength and spin-Hall conductivity with a very small magnetic susceptibility, implying an insignificant magnetic proximity effect (MPE). We report here the observation of longitudinal spin Seebeck effect (LSSE) using Rh as a normal metal. A Rh film was sputtered on nanometer thick YIG films of highly crystalline nature and extremely low magnetic damping to obtain Rh/YIG hybrid structure. A clear thermal voltage Vth (SSE voltage) was obtained when a temperature gradient was applied on the Rh/YIG hybrid. The Rh film showed a very weak anomalous Hall resistance and the magneto-resistive testing clearly ruled out the magnetization of the Rh films via MPE. The anisotropic magnetoresistance (AMR) revealed a clear spin hall magnetoresistance (SMR) signal in Rh film implying a purely intrinsic spin current generation, free from any parasitic magnetic effects. The work can open a new window in the study of pure and uncontaminated spin current, generated in ferromagnetic insulators, using Rh as spin current detector.  相似文献   

10.
We study the spin currents induced by topological screw dislocation and cosmic dispiration. By using the extended Drude model, we find that the spin dependent forces are modified by the nontrivial geometry. For the topological screw dislocation, only the direction of spin current is bent by deforming the spin polarization vector. In contrast, the force induced by cosmic dispiration could affect both the direction and magnitude of the spin current. As a consequence, the spin-Hall conductivity does not receive corrections from screw dislocation.  相似文献   

11.
Spin pumping in yttrium-iron-garnet(YIG)/nonmagnetic-metal(NM) layer systems under ferromagnetic resonance(FMR) conditions is a popular method of generating spin current in the NM layer.A good understanding of the spin current source is essential in extracting spin Hall angle of the NM and in potential spintronics applications.It is widely believed that spin current is pumped from precessing YIG magnetization into NM layer.Here,by combining microwave absorption and DC-voltage measurements on thin YIG/Pt and YIG/NM_1/NM_2(NM_1 =Cu or Al,NM_2 =Pt or Ta),we unambiguously showed that spin current in NM,instead of from the precessing YIG magnetization,came from the magnetized NM surface(in contact with thin YIG),either due to the magnetic proximity effect(MPE) or from the inevitable diffused Fe ions from YIG to NM.This conclusion is reached through analyzing the FMR microwave absorption peaks with the DC-voltage peak from the inverse spin Hall effect(ISHE).The voltage signal is attributed to the magnetized NM surface,hardly observed in the conventional FMR experiments,and was greatly amplified when the electrical detection circuit was switched on.  相似文献   

12.
We have presented here the consequences of the non-uniform exchange field on the spin transport issues in spin chiral configuration of ferromagnetic graphene. Taking resort to the spin–orbit coupling (SOC) term and non-uniform exchange coupling term we are successful to express the expression of Hall conductivity in terms of the exchange field and SOC parameters through the Kubo formula approach. However, for a specific configuration of the exchange parameter we have evaluated the Berry curvature of the system. We also have paid attention to the study of SU(2) gauge theory of ferromagnetic graphene. The generation of anti damping spin–orbit torque in spin chiral magnetic graphene is also briefly discussed.  相似文献   

13.
We present a quantitative analysis of the temperature dependence of the muon spin relaxation rate measured in simple magnets. We consider the low temperature, critical and high temperature regimes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
利用飞秒激光脉冲在生长于二氧化硅衬底上的W/CoFeB/Pt和Ta/CoFeB/Pt两类铁磁/非磁性金属异质结构中实现高效、宽带的相干THz脉冲辐射.实验中, THz脉冲的相位随外加磁场的反转而反转,表明THz辐射与样品的磁有序密切相关.为了考察三层膜结构THz辐射的物理机制,分别研究了构成三层膜结构的双层异质结构(包括CoFeB/W, CoFeB/Pt和CoFeB/Ta)的THz辐射.实验结果都与逆自旋霍尔效应相符合, W/CoFeB/Pt和Ta/CoFeB/Pt三层膜结构所辐射的THz强度优于同等激发功率下的ZnTe (厚度0.5 mm)晶体.此外,还研究了两款异质结构和ZnTe的THz辐射强度与激发光脉冲能量密度的关系,发现Ta/CoFeB/Pt的饱和能量密度略大于W/CoFeB/Pt的饱和能量密度,表明自旋电子在Ta/CoFeB/Pt中的界面积累效应相对较小.  相似文献   

15.
The effect of itinerant spin moment (m) dynamic in spin transfer switching has been ignored in most previous theoretical studies of the magnetization (M) dynamics. Thus in this paper, we proposed a more refined micromagnetic model of spin transfer switching that takes into account in a self-consistent manner of the coupled m and M dynamics. The numerical results obtained from this model further shed insight on the switching profiles of m and M, both of which show particular sensitivity to parameters such as the anisotropy field, the spin torque field, and the initial deviation between m and M.  相似文献   

16.
罗海陆  文双春 《物理》2012,41(6):367-373
光束在经过非均匀介质后,自旋角动量相反(左、右旋圆偏振)的光子在垂直于入射面的横向相互分离,造成光束的自旋分裂,这种现象叫做光自旋霍尔效应.它类似于电子系统中的自旋霍尔效应:自旋光子扮演自旋电子的角色,而折射率梯度则起外场作用.光自旋霍尔效应为操控光子提供了新的途径,在纳米光学、量子信息和半导体物理方面具有重要的应用前景;同时由于它与凝聚态和高能物理中的带电粒子自旋霍尔效应有高度的相似性和共同的拓扑根源,所以又为测量自旋霍尔效应这类弱拓扑现象提供了独特而又方便的机会.文章简单介绍了光自旋霍尔效应,并总结了近几年国内外的研究进展.  相似文献   

17.
《Physics letters. A》2020,384(24):126454
Previous theoretical studies show that the spin current in spin-orbit coupled systems can be effectively conserved. In this study, we show that in the presence of an external magnetic field B perpendicular to the surface without causing Landau levels, the spin-Hall conductivity, including the conventional spin and spin-torque Hall currents exhibit an interesting symmetry, σxyc(B)=σxyc(B) valid for k-linear and k-cubic Rashba systems. The phenomenon where the electric field generated spin z component is unaltered under BB is attributed to the fact that the spin precession is locked in spin-orbit coupled systems. The perpendicular magnetic field generates spin x and y components, which are linear to B, and thus, there is no time-reversal symmetry. This result provides evidence for the detection of the bulk spin-Hall current. Furthermore, the applied magnetic field breaks the degenerate point of the two-band model, and the resulting spin-Hall conductivity does not vanish even for systems with linear momentum, which implies that the Berry phase is not the principal mechanism in k-linear systems. The non-zero charge-Hall conductivity generated by the perpendicular magnetic field is discussed here.  相似文献   

18.
An intrinsic contribution to the spin Hall effect in two‐dimensional silicene is considered theoretically within the linear response theory and Green's function formalism. When an external voltage normal to the silicene plane is applied, the spin Hall conductivity is shown to reveal a transition from the spin Hall insulator phase at low bias to the conventional insulator phase at higher voltages. This transition resembles the recently reported phase transition in bilayer graphene. The spin–orbit interaction responsible for this transition in silicene is much stronger than in graphene, which should make the transition observable experimentally. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Two components of the spin torque exerted on a free ferromagnetic layer of finite thickness and a half-infinite ferromagnetic electrode in single tunnel junctions have been calculated in the spin-polarized free-electron-like one-band model. It has been found that the torque oscillates with the thickness of ferromagnetic layer and can be enhanced in the junction with the special layer thickness. The bias dependence of torque components also significantly changes with layer thickness. It is non-symmetric for the normal torque, in contrast to the symmetric junctions with two identical half-infinite ferromagnetic electrodes. The asymmetry of the bias dependence of the normal component of the torque can be also observed in the junctions with different spin splitting of the electron bands in the ferromagnetic electrodes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号