首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mo2C是构建Mxene基器件的重要材料之一,对Mo2C二维材料声子输运的理解非常必要。文章结合第一性原理方法和声子玻尔兹曼输运方程,研究了二维Mo2C材料的晶格热导率。研究表明,室温下二维Mo2C导热系数非常低,其锯齿方向和扶手椅方向的晶格热导率分别为7.20 和 5.04 W/mK。计算了声学振动和光学振动模式对晶格热导率的贡献,揭示总热导率主要由面内声学横波的振动模式所贡献。还进一步计算了声子群速度、声子弛豫时间、三声子散射空间和模式格林艾森参数,发现二维Mo2C中的声子群速度和声子弛豫时间对晶格传输有重要的影响。  相似文献   

2.
We find exact solutions of the two-particle Boltzmann equation for hard disks and hard spheres diffusing isothermally in an external field. The corresponding transport coefficient, one-particle current divided by field strength, decreases as the field increases. This nonlinear dependence of the current on the field and the corresponding nonlinear dependence of the distribution function on the current are compared to the predictions of single-time information theory. Our exact steady-state distribution function, from Boltzmann's equation, is quite different from the approximate information-theory analog. The approximate theory badly underestimates the nonlinear decrease of entropy with current. The exact two-particle solutions we find here should prove useful in testing and improving theories of steady-state and transient distribution functions far from equilibrium.  相似文献   

3.
L. Ren 《Physics letters. A》2008,372(23):4307-4310
In terms of Kubo's formula and Green's function method, for the two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling (SOC), we study the spin polarization due to the effect from magnetic impurities with anisotropic spin dependent delta type coupling to electrons when an external dc electric field in plane is applied. The vertex correction of impurities in ladder approximation is carried out in the limit of EF?1/τ, Δ. We find that the strength of spin polarization can be significantly modified by vertex correction and the spin polarization is relevant to the anisotropy coefficient γ, but the direction of net spin polarization cannot be changed.  相似文献   

4.
An exact solution of the Boltzmann equation for a binary mixture of colored Maxwell molecules is found. The solution corresponds to a nonequilibrium homogeneous steady state created by a nonconservative external force. Explicit expressions for the moments of the distribution function are obtained. By using information theory, an approximate velocity distribution function is constructed, which is exact in the limits of small and large field strengths. Comparison is made between the exact energy flux and the one obtained from the information theory distribution.  相似文献   

5.
The thermal resistance of a crystal lattice with a monatomic unit cell due to three-phonon scattering processes is investigated in detail theoretically. A general expression for the lattice thermal conductivity is derived from a combined analysis based on: (i) the Boltzmann equation and (ii) data on the heat current autocorrelation function obtained via molecular dynamics simulations in conjunction with the Green–Kubo formalism. It is argued that the phonon gas in a monatomic lattice conducts heat as if it consisted of two distinct parts (two ‘thermal fluids’), so that the lattice thermal conductivity can be decomposed into contributions from these two parts. The origin of the behaviour of the phonon gas, which is explored in the present work, is due to an intrinsic interplay between Umklapp and normal three-phonon scattering processes. New insight into the nature of the lattice thermal conductivity is demonstrated and the results of the present work are in agreement with previous studies in this area.  相似文献   

6.
《Physics letters. A》2020,384(25):126457
The flat hexagonal borophene oxide (B2O) has the highest Li storage capacity among existing two-dimensional materials. Thermal conductivity is an important parameter for the safety of Li-ion batteries. We investigate the lattice thermal conductivity of B2O by solving phonon Boltzmann transport equation combined with the first-principles calculations. We found that the relaxation time approximation remarkably underestimate the thermal conductivity (κ) of monolayer B2O, revealing phonon hydrodynamics characteristic. The κ of B2O from the exact solution of Boltzmann transport equation is 53 W m−1 K−1 and 130 W m−1 K−1 along armchair-direction and zigzag-direction at 300 K, respectively. B2O exhibits strong thermal transport anisotropy due to anisotropic phonon group velocity, obviously larger than that of other borophene allotropes. At room temperature, the phonon mean free path of B2O is about 231 nm and 49 nm along armchair-direction and zigzag-direction, respectively. The highly anisotropic thermal conductivity of B2O offers new possibilities for its applications in thermal management.  相似文献   

7.
Motivated by the recent discovery of a strongly spin–orbit-coupled two-dimensional (2D) electron gas near the surface of Rashba semiconductors BiTeX (X= Cl, Br, I), we calculate the thermoelectric responses of spin polarization in a 2D Rashba model. By self-consistently determining the energyand band-dependent transport time, we present an exact solution of the linearized Boltzmann equation for elastic scattering. Using this solution, we find a non-Edelstein electric-field-induced spin polarization that is linear in the Fermi energy EF when EF lies below the band crossing point. The spin polarization efficiency, which is the electric-field-induced spin polarization divided by the driven electric current, increases for smaller EF .We show that, as a function of EF, the temperaturegradient-induced spin polarization increases continuously to a saturation value when EF decreases below the band crossing point. As the temperature tends to zero, the temperature-gradient-induced spin polarization vanishes.  相似文献   

8.
针对二维柱几何非定常中子输运方程的Sn-间断有限元方法,提出基于格式的界面预估校正并行算法.数值算例表明,该并行算法在精度与并行度等诸方面均具有良好的性质,与已有的基于隐式格式的并行扫描算法相比,对于二维中子输运大规模计算问题,并行计算效率较高,并行加速比可增加-倍以上,且可保持原隐式格式的计算精度.  相似文献   

9.
Balance equation approach to the hot-electron transport in electric and magnetic fields is reformulated.The balance equations are re-derived from the Boltzmann equation. A new expression for the distribution function isreported in the present paper. It is homogeneous steady solution of the Boltzmann equation in constant relaxation timeapproximation. It holds when ωocτ < i or ωc < Te. As an example, the mobility of 2D electron gas in the GaAs-AlGaAsheterojunction is computed as a function of electric field and magnetic field.  相似文献   

10.
本文结合玻尔兹曼输运方程和电声散射速率计算研究锐钛矿和金红石二氧化钛中光生载流子的超快动力学过程. 其中,动力学模拟所需的结构参数均通过第一性原理计算获得. 结果表明,由于存在强Fr?hlich型电声耦合,纵光学声子模对两个晶相的能量弛豫过程均有十分显著的影响,但是两个晶相的弛豫机理却表现出明显的差异. 对于单条导带内的弛豫过程,锐钛矿和金红石的能量弛豫时间分别为24.0 fs和11.8 fs,前者约为后者的二倍. 这一差异来源于两个晶相中不同的电子扩散分布以及不同的声学模散射贡献. 对于涉及多条导带的弛豫过程,预测的锐钛矿和金红石的总体弛豫时间分别为47 fs和57 fs,其相对大小与单条导带的情况相反. 分析表明金红石相弛豫较慢是因为存在多个速率控制步骤. 这些发现为调控电子动力学以及设计高效的二氧化钛器件提供了有价值的信息.  相似文献   

11.
《Current Applied Physics》2015,15(10):1205-1215
Calculations of renormalized perpendicular conductivity within Kubo formula employing single particle temperature dependent Green's function formalism for bilayer graphene has been attempted. On the basis of numerical analysis, perpendicular conductivity as a function of temperature, interlayer coupling, onsite Coulomb interaction and carrier concentration per site has been analyzed for both AA- and AB-stacked bilayer graphene. It is found that perpendicular conductivity increases with interlayer coupling and also with temperature at low temperatures while at higher temperatures, there is saturation in perpendicular conductivity. Influences of onsite Coulomb interaction and carrier concentration per site on perpendicular conductivity is just opposite to each other while onsite Coulomb energy suppresses the rate of increase of σ/σ⊥0 with temperature, on the other hand increase in carrier density per site enhance this rate significantly. Finally, theoretically obtained results on temperature dependent perpendicular conductivity are viewed in terms of electronic transport data as well as recent theoretical works available in bilayer graphene.  相似文献   

12.
13.
A simple Kronig-Penney model for 1D mesoscopic systems with δ peak potentials is used to study numerically the influence of spatial disorder on conductance fluctuations and distribution at different regimes. The Lévy laws are used to investigate the statistical properties of the eigenstates. It is found that an Anderson transition occurs even in 1D meaning that the disorder can also provide constructive quantum interferences. The critical disorder Wc for this transition is estimated. In these 1D systems, the metallic phase is well characterized by a Gaussian conductance distribution. Indeed, the results relative to conductance distribution are in good agreement with the previous works in 2D and 3D systems for other models. At this transition, the conductance probability distribution has a system size independent shape with large fluctuations in good agreement with previous works.  相似文献   

14.
A semi-phenomenological theory of variable-range hopping (VRH) is developed for two-dimensional (2D) quasi-one-dimensional (quasi-1D) systems such as arrays of quantum wires in the Wigner crystal regime. The theory follows the phenomenology of Efros, Mott and Shklovskii allied with microscopic arguments. We first derive the Coulomb gap in the single-particle density of states, g(ε), where ε is the energy of the charge excitation. We then derive the main exponential dependence of the electron conductivity in the linear (L), i.e. σ(T) ∼exp [-(TL/T)γL], and current in the non-linear (NL), i.e. , response regimes ( is the applied electric field). Due to the strong anisotropy of the system and its peculiar dielectric properties we show that unusual, with respect to known results, Coulomb gaps open followed by unusual VRH laws, i.e. with respect to the disorder-dependence of TL and and the values of γL and γNL.  相似文献   

15.
FCHC lattice gases are the basic models for studying flow problems in three-dimensional systems. This paper presents a self-contained theoretical analysis and some computer simulations of such lattice gases, extended to include an arbitrary number of rest particles, with special emphasis on non-semi-detailed balance (NSDB) models. The special FCHC lattice symmetry guarantees isotropy of the Navier-Stokes equations, and enumerates the 12 spurious conservation laws (staggered momenta). The kinetic theory is based on the mean field approximation or the nonlinear Boltzmann equation. It is shown how calculation of the eigenvalues of the linearized Boltzmann equation offers a simple alternative to the Chapman-Enskog method or the multi-time-scale methods for calculating transport coefficients and relaxation rates. The simulated values for the speed of sound in NSDB models slightly disagree with the Boltzmann prediction.  相似文献   

16.
Pointing errors caused by the atmospheric turbulence will degrade the performance of free space optical (FSO) communication systems, especially the bit error rate (BER). In this paper, we innovatively analyze the relationship between BER and pointing errors by the probability density functions (PDFs) and intensity displacement in focal plane under the On-Off Keying (OOK) modulation conditions. The closed-loop experimental system is set up in laboratory, where the fast steering mirror (FSM) is real-time controlled by embedded controller with the parallel processing technology and the atmospheric turbulence is simulated by a turbulence simulation box. The results of repeated experiments show that the method of pointing errors correction we proposed is efficient under the conditions of atmospheric turbulence. By utilizing our method, the BER can decrease from nearly 10−3 to nearly or even below 10−9, thus improving the performance of FSO communication systems significantly.  相似文献   

17.
Weimin Chen  Baiyun Huang 《哲学杂志》2013,93(14):1552-1577
Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay’s viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al–Cu, Al–Ni and Al–Ce–Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al–Ni alloys with the increasing temperature is also discussed. What’s more, the calculated inter-diffusivities in liquid Al–Cu, Al–Ni and Al–Ag–Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al–Cu, Al–Ce–Ni and Al–Ag–Cu melts are further used to validate the present calculation method.  相似文献   

18.
《Physics letters. A》2020,384(34):126864
We address the investigation of non trivial properties of the energy current in boundary driven XXZ quantum spin models. In specific, we focus on the occurrence of the one-way street phenomenon in asymmetrical chains, a phenomenon stronger than rectification, which establishes the existence of a unique way for the energy current in the absence of external magnetic field, that is, the magnitude and direction of the energy flow does not change as we invert the baths at the boundaries. For general target polarizations at the boundaries, we show that such a phenomenon holds in the presence of long range interactions, ingredient which increases the flow and the rectification in chains of classical oscillators, and so, of interest in the study of manipulation and control of the energy flow.  相似文献   

19.
It is shown that unobserved processes, which are usually eliminated from the theory by the introduction of muon parity, can be forbidden on the basis of spatial properties.In conclusion, the author would like to thank Prof. Votruba for valuable discussions and interest in the work.  相似文献   

20.
二氧化碳(CO2)高精度反演中易受多种因素的影响,其中一部分是系统误差,如温度廓线、压力廓线、水汽以及大气分层等精度不足所带来的影响,仅利用CO2吸收带的光谱信息很难克服由此带来的误差。这种系统误差的波长依赖性小,可以考虑其他波段进行校正。模拟研究表明,上述系统误差对CO2反演的影响经O2校正后有较大程度地减小。利用大兴安岭地区的温室气体观测卫星(GOSAT)观测数据进行CO2反演,采用氧气(O2)A吸收带校正上述系统误差,结果显示反演精度得到明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号