首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FeSi2合金在高压下的凝固   总被引:7,自引:0,他引:7       下载免费PDF全文
研究了压力对FeSi2合金凝固组织的影响.与常压下凝固的典型共晶组织不同,高压条件下的凝固组织为初生ε相树枝晶加离异共晶.高压下凝固组织的变化主要是与压力对相图的影响和对凝固过程中溶质原子扩散的影响有关.通过引入压力参量,推导了高压凝固过程中的成分过冷判据,并应用该判据分析了高压凝固树枝晶组织的形成机理. 关键词: 高压 凝固 FeSi2  相似文献   

2.
By subjecting materials to high pressures one can significantly reduce interatomic and intermolecular distances. This causes drastic changes in the nature of electronic and vibrational states and also in bonding, bringing about several unusual structural, electronic and magnetic phase transitions. In addition, these studies provide a very useful data about the equation of state of the materials of interest. Several examples from our work are presented which elucidate the richness of physics under these conditions.  相似文献   

3.
4.
The structural, electronic and vibrational properties of InN under pressures up to 20 GPa have been investigated using the pseudo-potential plane wave method (PP-PW). The generalized-gradient approximation (GGA) in the frame of density functional theory (DFT) approach has been adopted. It is found that the transition from wurtzite (B4) to rocksalt (B1) phase occurs at a pressure of approximately 12.7 GPa. In addition, a change from a direct to an indirect band gap is observed. The mechanism of these changes is discussed. The phonon frequencies and densities of states (DOS) are derived using the linear response approach and density functional perturbation theory (DFPT). The properties of phonons are described by the harmonic approximation method. Our results show that phonons play an important role in the mechanism of phase transition and in the instability of B4 (wurtzite) just before the pressure of transition. At zero pressure our data agree well with recently reported experimental results.  相似文献   

5.
High pressure Raman scattering experiments have been performed for Rb8Sn442 in order to investigate the pressure induced phase transition. At pressures of 6.0 and 7.5 GPa, Raman spectrum was drastically changed, indicating the phase transitions. The irreversibility of the spectral change and the disappearance of Raman peak observed at 7.5 GPa strongly suggest the occurrence of irreversible amorphization.  相似文献   

6.
We report phase transition and stability of MoS2 with and without the presence of sulfur melt under high-pressure and high-temperature conditions. Rhombohedral (3R) phase is found to be a high-temperature phase of MoS2 at high pressures. Excess sulfur melt catalyzes the hexagonal (2H) to rhombohedral (3R) phase transformation and lowers the conversion temperature by more than 280 K. Boundary between 2H and 3R phases has been delineated with a negative slope. Based on experimental observations, sulfur-catalyzed 2H→3R transformation mechanisms are proposed involving atomic exchange between MoS2 and sulfur, which is different from the case of without excess sulfur that proceeds through rotation and translation of the S–Mo–S sandwich layers.  相似文献   

7.
First principles calculations of structural, electronic, elastic, and phonon properties of the intermetallic compounds FeSi and CoSi in the B2 (CsCl) structure are presented, using the pseudopotential plane-wave approach based on density functional theory, within the local density approximation. The optimized lattice constants, independent elastic constants, bulk modulus, and first-order pressure derivative of the bulk modulus are reported for the B2 structure and compared with earlier experimental and theoretical calculations. A linear-response approach to density functional theory is used to derive the phonon dispersion curves, and the vibrational partial and total density of states. Atomic displacement patterns for FeSi at the Γ, X, and R symmetry points are presented. The calculated zone-center optical phonon mode for FeSi is in good agreement with experimental and theoretical data.  相似文献   

8.
硬石膏(CaSO4)是地球上分布最广的硫酸盐矿物之一,为研究硬石膏向高压硬石膏转变的压力条件和相变机理、确定硬石膏拉曼光谱压标的适用范围,实验结合水热金刚石压腔和激光拉曼光谱实验技术,研究了常温高压条件下硬石膏的相变过程以及硬石膏和高压硬石膏的拉曼光谱特征。实验结果显示,常温条件下硬石膏向高压硬石膏发生相变的压力在2.3 GPa左右,但是该相变压力在增压和降压过程中存在较大差异,表明硬石膏与高压硬石膏的转变过程存在明显滞后性,证实了该相变过程属于重建型相变。由于重建型相变的控制因素除了温度和压力之外,还包括相变的速率以及矿物结构的亚稳定性等,从而很好地解释了不同实验者获得的硬石膏与高压硬石膏的相变压力之间存在的巨大差异。与硬石膏相比,高压硬石膏的拉曼光谱特征表现为SO4对称伸缩振动(ν1)从1 128.28 cm-1突然下降至1 024.39 cm-1,同时对称弯曲振动(ν2)分裂为441,459和494 cm-1三个峰,反对称伸缩振动(ν3)分裂为1 136,1 148,1 158和1 173 cm-1四个峰,反对称弯曲振动(ν4)也分裂为598,616,646和671 cm-1四个峰,可以作为判定硬石膏进入高压相态的有效标志。与硬石膏相比,高压硬石膏SO4振动产生的拉曼峰数量更多、强度更低,表明影响SO4振动的原子更多、分布更加复杂,这与高压硬石膏晶体结构(独居石结构,单斜晶系)的对称性比硬石膏(斜方晶系)更低相吻合。在硬石膏结构稳定的压力范围内(常压至2.3 GPa),硬石膏SO4拉曼振动中除了ν2,416的振动频率变化不显著以外,其余振动均随着压力的升高以稳定的速率向高波数方向移动,同时谱峰的强度、形态和半高宽没有明显改变,从而保证了不同压力下硬石膏的拉曼峰具有一致的拟合误差和压力标定精度。同时,还通过方解石ν1,1 085拉曼峰随压力的变化速率、方解石向CaCO3-Ⅱ以及CaCO3-Ⅱ向CaCO3-Ⅲ的相变压力对硬石膏压力标定结果进行检验,确定了硬石膏压标的可靠性。  相似文献   

9.
运用基于赝势平面波基组的密度泛函程序VASP并结合Quantum ESPRESSO,Phonopy软件包对压力下VN的结构、力学性质、声子色散关系进行了第一性原理的研究.分别对NaCl型(B1),CsCl型(B2),WC型(Bh)三种构型的VN进行了计算,三种结构的体积能量曲线、焓压关系和声子谱表明在常压下六角WC结构与立方结构相比更稳定.随着压力增加VN由Bh结构到B1结构的相变点发生在30GPa左右,而B1结构到B2结构的相变点可能发生在150GPa左右.常压下三种结构的VN是力学稳定的,其弹性常数和弹性模量都有随压强的增大而增加的趋势,三者都是脆性材料.B1结构和B2结构坐标基矢方向上的杨氏模量数值与体对角线方向上的差距较大,体现出明显的各向异性.随压力的增加B1结构各向异性程度增大而B2结构各向异性程度减小  相似文献   

10.
Pressure-induced structural phase transitions at high-pressure in monosulfides of thorium, uranium, neptunium and plutonium (AnS) have been studied theoretically by an inter-ionic potential theory with modified ionic charge introduced to include the Coulomb screening effect due to localized ‘f’ electrons. These AnS compounds undergo a phase transition from sodium chloride (NaCl) to cesium chloride (CsCl) structure at a very high-pressure. The present theoretical investigation carried out up to 120?GPa reveals that these compounds undergo NaCl–CsCl phase transitions at 100, 81, 75 and 105?GPa for ThS, US, NpS and PuS, respectively. The first-order pressure derivatives calculated from the present theory agree well with observed data.  相似文献   

11.
We have measured the conductivity σ of TlX(X=Cl, Br, I) compounds up to 5.3 GPa and between 300–823 K. The σT dependence for all compounds can be divided into three distinct regions: (i) low temperature (LT), <400 K, with unusual negative σT dependence, (ii) intermediate temperature (IT), 400<650 K, with positive σT dependence and (iii) high temperature (HT), T>650 K, with positive σT dependence. The σT isobars were used to construct the TP solid phase diagram for each compound. The LT region data indicate a new meta-stable phase in the 1.0–3.5 GPa range. The LT→IT transition is characterized by an inverse σT dependence followed by normal Arrhenius behavior up to and including the HT region. The extrapolation to 1 atm of the P-dependent boundary between IT and HT regions above 3 GPa for each compound in the PT plot yields a value close to its respective normal (1 atm) Tmelt suggesting a solid order–disorder transition type paralleling -AgI behavior. The abrupt drop in conductivity in the LT region for P between 2.5–4.1 GPa of all compounds is at variance with the Arrhenius behavior observed for unperturbed ion migration implying the appearance of a second factor overriding the Arrhenius temperature dependence. Normal Arrhenius σT dependence prevails in both IT and HT regions with Qc values of 85–100 kJ mol−1 and 50–75 kJ mol−1, respectively. The higher conductivities at 0.4 GPa for TlBr and TlI relative to their 1 atm data and the increasing σ with P are in strong contrast to the normal σ-P behavior of TlCl. The dependence of activation volume ΔV on T for TlCl, i.e. ΔV>0, shows abnormally high values with a maximum at 500 K for P<3.0 GPa but reasonable ΔV values appear above 3.0 GPa. The ΔVT dependence for both TlBr and TlI with ΔV<0 is incompatible with an ion transport mechanism suggesting an electronic conduction process and implying an ionic–metallic transition at higher pressures. These contrasting conductivity features are discussed and interpreted in terms of electronegativity differences and bonding character rather than structure.  相似文献   

12.
Using a microcircuit fabricated on a diamond anvil cell, in situ conductivity measurements on nanophase (NP) γ-Fe2O3 are obtained under high pressure. For NP γ-Fe2O3, the abrupt increase in electrical conductivity occurs at a pressure of 21.3 GPa, corresponding to a transition from maghemite to hematite. Above 26.4 GPa, conductivity increases smoothly with increasing pressure. No distinct abnormal change is observed during decompression, indicating that transformation is irreversible. The temperature-dependence of the conductivity of NP γ-Fe2O3 was investigated at several pressures, indicating the electrical conductivity of the sample increases with increasing pressure and temperature, and that a remarkable phenomenon of discontinuity occurs at 400 K. The abnormal change is attributed to the electronic phase transitions of NP γ-Fe2O3 due to the variation of inherent cation vacancies. Besides, the temperature-dependence of the electrical conductivity displays semiconductor-like behavior before 33.0 GPa.  相似文献   

13.
Pressure induced phase transformation and amorphization for Ge-based type-I clathrates have been investigated by means of synchrotron XRD and Raman experiments under high pressure. The XRD results of Sr8Ga16Ge30, Ba8Ga16Ge30, and I8Sb8Ge38 demonstrated volume collapse phase transitions at 18, 33, and 42 GPa, respectively. Reitveld analyses performed for I8Sb8Ge38 reveal a deformation of six-member rings of 14-hedron cages with increasing pressure.  相似文献   

14.
First-principles plane-wave pseudopotential approaches were used to investigate the structural phase transition of As from the rhombohedral structure to the simple cubic (sc) one under high pressure at the transition pressure of 22 GPa, which is also found to be accompanied by a volume reduction of 0.8%. The detailed structural changes during the phase transition were analyzed.  相似文献   

15.
High pressure behavior of CaB6 with cubic crystal structure is investigated by means of energy dispersive X-ray diffraction and by employing in situ resistance measurement in a diamond anvil cell. Two newcome high pressure phase transitions are found with pressure ranging from ambient to 26 GPa. The first one at 12 GPa is a structural phase transition from CsCl-type structure to orthogonal structure, which is reflected by both the X-ray diffraction and the resistance variation. The other one at 3.7 GPa is suggested to be an electronic transition, which is observed only in resistance measurement. The diffraction pattern recovered while the pressure is released to 0 GPa with a pressure hysteresis over 11 GPa, which implies the reversibility of the two phase transitions. Bulk moduli of the cubic and orthogonal phases are estimated by fitting the data to a Brich-Murnaghan equation of state equal to 169.9 and 48.2 GPa, respectively.  相似文献   

16.
We report on BH3NH3, which is material considered promising to use as hydrogen storage, using density functional theory with generalized gradient approximation (GGA). We study the phase transition of BH3NH3 at high pressure and temperature. Our observed phase transition of BH3NH3 from body-centered tetragonal to orthorhombic at supports the recent and earlier studies. We observe the phase transformation of BH3NH3 at , which is in good agreement with experimental value. Specifically, we predict the phase transition at to be orthorhombic to body-centered tetragonal on the basis of our first principles calculations.  相似文献   

17.
Phase transitions of the anti-fluorite compounds Mg2Ge and Mg2Sn under high pressure were investigated using the first-principles plane-wave method within the pseudopotential and generalized gradient approximations. The calculated results show that Mg2Ge and Mg2Sn undergo two first-order phase transitions at high pressure and the sequence of the pressure-induced phase transitions is from the anti-fluorite to the anti-cotunnite, and then to the Ni2In-type structure. The high pressure behaviors of Mg2Ge and Mg2Sn are similar to Mg2Si and the isostructural alkali-metal oxide Li2O. Moreover, the electronic and optical properties of both the anti-fluorite and the high-pressure phases are presented.  相似文献   

18.
本文基于第一性原理的密度泛函理论(DFT)和密度泛函微扰理论(DFPT),优化计算出金属钒在不同压强下的晶体结构,以此来说明其发生的结构相变。最后利用晶体结构和能量的关系,直接导出钒在不同压强下的熔化温度。计算结果都与已有的结果进行了比较。  相似文献   

19.
The magnetic permeability of materials at optical frequencies is usually suggested in the literature to be μ=1. In this case one cannot expect to measure the magnetic second order phase transition at optical frequencies. The main novel idea of this paper is that the magnetic permeability μ is not equal to 1 for optical frequency and a phase transition of magnetism was measured experimentally with an optical frequency. In particular, this work presents the detection of a magnetic second order phase transition in nickel with temperature and at different pressures, by reflectivity measurements at an optical frequency. Based on our experiments the magnetic permeability is calculated as a function of temperature for pressures of 0.3, 5 and 10 GPa attained in a diamond anvil cell (DAC).  相似文献   

20.
Following the Landau model, the pressure–temperature dependence of the order parameter is derived. Using the Lyddane–Sachs–Teller (LST) relationship, the model is applied to ferroelectricity to deduce the pressure behaviour of the soft mode driving the transition. Comparison with experiment is made using recent data obtained on KNbO3 under pressure over a large temperature range. The results indicate that the ferroelectric–paraelectric (FE–PE) transition observed in KNbO3 at high pressure from ~4 to ~25?GPa is of the second-order type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号