首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For geodesic motion of a particle in a stationary spacetime the U 0 component of particle 4-velocity is constant and is considered to be a conserved mechanical energy. We show that this concept of a conserved mechanical energy can be extended to particles that move under the influence of a normal force, a force that, in the stationary frame, is orthogonal to the motion of the particle. We illustrate the potential usefulness of the concept with a simple example.  相似文献   

2.
It is shown that the cranking model normally gives a smaller rotation-aligned spin for an odd quasiparticle than the particle-rotor model, especially at low rotational frequencies. The basic reason is found to be that the rotational frequency vector of the cranking model is “sharp”. This is an unphysical model property, and in the presence of a particle whose rotational motion is partly decoupled from the rotational motion of the average field its consequences become serious. A “sharp” rotational frequency corresponds to a neglect of the recoil effect that establishes coherence between the motion of the decoupled nucleon and the other nucleons and therefore is a prerequisite for the conservation of angular momentum. In conclusion the cranking model cannot be invoked to explain the so-called “Coriolis attenuation”, relative to the particle-rotor model, that is observed experimentally. Particle-rotor calculations are carried out into the backbending region of some well-deformed rare-earth nuclei, and the results indicate that the “Coriolis attenuation” effect is weak or absent at high rotational frequencies. However, the experimental i132, unfavoured band of 167Yb is found to exhibit an anomalous “downbending” behaviour.  相似文献   

3.
A classical particle in a constant magnetic field undergoes cyclotron motion on a circular orbit. At the quantum level, the fact that all classical orbits are closed gives rise to degeneracies in the spectrum. It is well-known that the spectrum of a charged particle in a constant magnetic field consists of infinitely degenerate Landau levels. Just as for the 1/r and r2 potentials, one thus expects some hidden accidental symmetry, in this case with infinite-dimensional representations. Indeed, the position of the center of the cyclotron circle plays the role of a Runge-Lenz vector. After identifying the corresponding accidental symmetry algebra, we re-analyze the system in a finite periodic volume. Interestingly, similar to the quantum mechanical breaking of CP invariance due to the θ-vacuum angle in non-Abelian gauge theories, quantum effects due to two self-adjoint extension parameters θx and θy explicitly break the continuous translation invariance of the classical theory. This reduces the symmetry to a discrete magnetic translation group and leads to finite degeneracy. Similar to a particle moving on a cone, a particle in a constant magnetic field shows a very peculiar realization of accidental symmetry in quantum mechanics.  相似文献   

4.
Consider a diffusion process on an infinite line terminated by a trap and modulated by a periodic field. When the frequency is equal to zero the mean time to trapping will be finite or infinite, depending on the sign of the field. We ask whether this behavior can be changed by an oscillatory field, and show that it cannot for pure Brownian motion. We suggest that transition can appear when the signal propagation velocity is finite as for the telegrapher's equation. We further suggest that the asymptotic time dependence of the survival probability is proportional tot –1/2 just as in the case of ordinary diffusion. The same conclusion is shown to hold for a system whose dynamics is governed by the equation , whereL is a constant.  相似文献   

5.
We propose a new method for the investigation of molecular motion in polymeric solids. In a mechanical step-function experiment, we thermally stimulate the response to a constant stress. The high resolving power of this technique permits detailed study of the complex retardation modes observed in polymers. By using “fractional” loading programs it is possible to differentiate a discrete and a continuous distribution of retardation time. This technique allows us to predict the complex compliance in a very wide frequency range: 104-10?12 Hz for experiments performed between liquid nitrogen temperature and 500°K. In low-density polyethylene, we have shown the existence of a discrete spectrum of mechanical retardation times which has the same fine structure as the spectrum of dielectric relaxation times obtained from the study of depolarization thermocurrent on the same sample. The predicted variation versus temperature and frequency of the loss compliance is compared with that of the dielectric loss factor.  相似文献   

6.
Fröhlich  J.  Merkli  M.  Sigal  I. M. 《Journal of statistical physics》2004,116(1-4):311-359
We study the stationary states of a quantum mechanical system describing an atom coupled to black-body radiation at positive temperature. The stationary states of the non-interacting system are given by product states, where the particle is in a bound state corresponding to an eigenvalue of the particle Hamiltonian, and the field is in its equilibrium state. We show that if Fermi's Golden Rule predicts that a stationary state disintegrates after coupling to the radiation field then it is unstable, provided the coupling constant is sufficiently small (depending on the temperature). The result is proven by analyzing the spectrum of the thermal Hamiltonian (Liouvillian) of the system within the framework of W *-dynamical systems. A key element of our spectral analysis is the positive commutator method.  相似文献   

7.
We derive the semiclassical approximation to Feynman's path integral representation of the energy Green function of a massless particle in the shadow region of an ideal obstacle in a medium. The wavelength of the particle is assumed to be comparable to or smaller than any relevant length of the problem. Classical paths with extremal length partially creep along the obstacle and their fluctuations are subject to non-holonomic constraints. If the medium is a vacuum, the asymptotic contribution from a single classical path of overall length L to the energy Green function at energy E is that of a non-relativistic particle of mass E/c2 moving in the two-dimensional space orthogonal to the classical path for a time τ=L/c. Dirichlet boundary conditions at the surface of the obstacle constrain the motion of the particle to the exterior half-space and result in an effective time-dependent but spatially constant force that is inversely proportional to the radius of curvature of the classical path. We relate the diffractive, classically forbidden motion in the “creeping” case to the classically allowed motion in the “whispering gallery” case by analytic continuation in the curvature of the classical path. The non-holonomic constraint implies that the surface of the obstacle becomes a zero-dimensional caustic of the particle's motion. We solve this problem for extremal rays with piecewise constant curvature and provide uniform asymptotic expressions that are approximately valid in the penumbra as well as in the deep shadow of a sphere.  相似文献   

8.
Simulation of hydrodynamics in ultrasonic batch reactor containing immobilized enzymes as catalyst is done. A transducer with variable power and constant frequency (24 kHz) is taken as source of ultrasound (US). Simulation comprises two steps. In first step, acoustic pressure field is simulated and in second step effect of this field on particle trajectories is simulated. Simulation results are compared with experimentally determined particle trajectories using PIV Lab (particle image velocimetry). Effect of varying ultrasonic power, positioning and number of ultrasonic sources on particle trajectories is studied. It is observed that catalyst particles tend to orientate according to pattern of acoustic pressure field. An increase in ultrasonic power increases particle velocity and also brings more particles into motion. Simulation results are found to be in agreement with experimentally determined data.  相似文献   

9.
Test particle evaluation of the diffusion coefficient in the presence of magnetic field fluctuations and binary collisions is presented. Chaotic magnetic field lines originate from resonant magnetic perturbations (RMPs). To lowest order, charged particles follow magnetic field lines. Drifts and interaction (collisions) with other particles decorrelate particles from the magnetic field lines. We model the binary collision process by a constant collision frequency. The magnetic field configuration including perturbations on the integrable Hamiltonian part is such that the single particle motion can be followed by a collisional version of a Chirikov-Taylor (standard) map. Frequent collisions are allowed for. Scaling of the diffusion beyond the quasilinear and subdiffusive behaviour is investigated in dependence on the strength of the magnetic perturbations and the collision frequency. The appearance of the so called Rechester-Rosenbluth regime is verified. It is further shown that the so called Kadomtsev-Pogutse diffusion coefficient is the strong collisional limit of the Rechester-Rosenbluth formula. The theoretical estimates are supplemented by numerical simulations.  相似文献   

10.
The Dirac-Pauli equation is used to obtain the exact equation of spin motion for spin-1/2 particles with an anomalous magnetic moment in a constant and uniform magnetic field. Exact formulas are established for the angular velocity of the revolution of such particles along circular orbits and the rotation of the particle spin with respect to momentum. Finally, a quantum mechanical equation for the motion of the particles in a strong magnetic field is derived. Zh. éksp. Teor. Fiz. 114, 448–457 (August 1998)  相似文献   

11.
声波在含气泡液体中的线性传播   总被引:1,自引:0,他引:1       下载免费PDF全文
王勇  林书玉  张小丽 《物理学报》2013,62(6):64304-064304
为了探讨含气泡液体对声波传播的影响, 研究了声波在含气泡液体中的线性传播. 在建立含气泡液体的声学模型时引入气泡含量的影响,建立气泡模型时引用 Keller的气泡振动模型并同时考虑气泡间的声相互作用,得到了经过修正的气泡振动方程. 通过对含气泡液体的声传播方程和气泡振动方程联立并线性化求解,在满足 (ω R0)/c << 1 的前提下,得到了描述含气泡液体对声波传播的衰减系数和传播速度. 通过数值分析发现,在驱动声场频率一定的情况下,气泡含量的增加及气泡的变小均会导致衰减系数增加和声速减小;气泡的体积分数和大小一定时, 驱动声场频率在远小于气泡谐振频率的情况下,声速会随驱动频率的增加而减小; 气泡间的声相互作用对声波传播速度及含气泡液体衰减系数的影响不明显.最终认为气泡的大小、 数量和驱动声场频率是影响声波在含气泡液体中线性传播的主要因素. 关键词: 含气泡液体 线性声波 声衰减系数 声速  相似文献   

12.
The specular reflection coefficient for low-energy 4He atoms incident on the free surface of superfluid 4He is calculated as a single particle motion coupled to the ripplon field in an effective surface potential. We find a characteristic dip in the reflection coefficient as an interference effect for the truncated surface potential.  相似文献   

13.
Pine litter flame is a weakly ionised medium. Electron-neutral collisions are a dominant form of particle interaction in the flame. Assuming flame electrons to be in thermal equilibrium with neutrals and average electron-neutral collision frequency to be much higher than the plasma frequency, the propagation of microwaves through the flame is predicted to suffer signal intensity loss. A controlled fire burner was constructed where various natural vegetation species could be used as fuel. The burner was equipped with thermocouples and used as a cavity for microwaves with a laboratory quality network analyzer to measure wave attenuation. Electron density and collision frequency were then calculated from the measured attenuation. The parameters are important for numerical prediction of electromagnetic wave propagation in wildfire environments. A controlled pine litter fire with a maximum flame temperature of 1080 K was set in the burner and microwaves (8–10.5 GHz) were caused to propagate through the flame. A microwave signal loss of 1.6–5.8 dB was measured within the frequency range. Based on the measured attenuation, electron density and electron-neutral collision frequency in pine fire were calculated to range from 0.51–1.35 × 1016 m−3 and 3.43–5.97 × 1010 s−1 respectively.  相似文献   

14.
The peculiarities of mechanical motion in Minkovski space with three-dimensional time are considered. A variation principle for deriving equations of motion is defined and the vector nature of energy and conservation laws for six-dimensional energy-momentum vector are discussed. Difficulties connected with vacuum instability and the possibility of anomalous nuclear reactions are removed due to the time irreversibility principle. The motion of a charged particle in a constant electric field is studied as an example of multitime processes. Some results concerning planet motion in the multitime gravitation field are presented.  相似文献   

15.
Nonlinear particle dynamics is studied both in current sheets and near neutral lines. The parameter governing particle chaos in a current sheet with a constant normal component, B(n), is kappa=(R(min)/rho(max))(1/2), where R(min) is the minimum field line radius of curvature and rho(max) is the maximum gyroradius. In such a current sheet, motion can be viewed as a combination of a component normal to the current sheet and a tangential component. The parameter kappa represents the ratio of the characteristic time scale of the normal component to the tangential, and thus, particle chaos is maximized for kappa approximately 1. For kappa<1, the slow motion preserves the action integral of the fast motion, J(z), except near the separatrix, the phase space boundary separating motion that crosses the current sheet midplane from that which does not. Near a linear neutral line, it is found that the parameter b(n), which is the ratio of the characteristic vertical and horizontal field strengths, rather than kappa governs particle chaos. In the limit b(n)<1, the slow motion again preserves J(z), and J(z) has the same analytic form as in a constant B(n) current sheet. In the limit of b(n)<1, the structure of x-p(x) phase space is controlled by the stable and unstable manifolds associated with the unstable fixed point orbit at (x,p(x))=(0,0), and this structure lies along a contour of constant J(z).  相似文献   

16.
王永久  唐智明 《中国物理》2001,10(8):679-682
The finite motion of a massive scalar particle in the gravitational field of a microcosmic black hole with weak relativistic approximation is discussed. In the Schwarzschild field, using the condition for balance σ=0, we obtain the relation between the produced and captured amplitudes for particles. In the Kerr field we show that the attenuation depends on the moment of the black hole and the attenuation process becomes an exciting one when ωh.  相似文献   

17.
《Physica A》1996,231(4):551-574
We consider the form of the rebound velocity, ν0, particle velocity, ν, and height, h, probability density functions (PDFs) for the one-dimensional motion of a single particle on a sinusoidally oscillating base. The motion is considered in the limit of high excitation (vibration frequency ⪢ collision rate). Experimentally, we find that these PDFs are well-approximated by Pν0(ν0) ∞ ν0 exp(− αν02), a Gaussian Pν(ν) ∞ exp(− αν2) and a Boltzmann-type function Ph(h) ∞ exp(− 2αgh), where α is a constant and g is the acceleration due to gravity. We develop an analytical model which accurately predicts the general form for the rebound velocity PDF; the other two PDFs are then analytically shown to follow as a consequence. Scaling laws for the particle granular temperature with peak base velocity and particle-base restitution coefficient, determined from previous work, can also be predicted from the PDF. A fine scale “spiky” structure in the rebound velocity PDF is found, using numerical simulations, to be a consequence of resonance phenomena between the particle and vibrating base. Good agreement between scaling laws from the theory and simulation is found but insufficient data is obtainable to derive accuracy exponents experimentally.  相似文献   

18.
The paper examines the emergence of gauge fields during the evolution of a particle with a spin that is described by a matrix Hamiltonian with n different eigenvalues. It is shown that by introducing a spin gauge field a particle with a spin can be described as a spin multiplet of scalar particles situated in a non-Abelian pure gauge (forceless) field U (n). As the result, one can create a theory of particle evolution that is gauge-invariant with regards to the group Un (1). Due to this, in the adiabatic (Abelian) approximation the spin gauge field is an analogue of n electromagnetic fields U (1) on the extended phase space of the particle. These fields are force ones, and the forces of their action enter the particle motion equations that are derived in the paper in the general form. The motion equations describe the topological spin transport, pumping, and splitting. The Berry phase is represented in this theory analogously to the Dirac phase of a particle in an electromagnetic field. Due to the analogy with the electromagnetic field, the theory becomes natural in the four-dimensional form. Besides the general theory, the article considers a number of important particular examples, both known and new.  相似文献   

19.
A mechanical model of a particle immersed in a heat bath is studied, in which a distinguished particle interacts via linear springs with a collection of n particles with variable masses and random initial conditions; the jth particle oscillates with frequency j p , where p is a parameter. For p>1/2 the sequence of random processes that describe the trajectory of the distinguished particle tends almost surely, as n, to the solution of an integro-differential equation with a random driving term; the mean convergence rate is 1/n p–1/2. We further investigate whether the motion of the distinguished particle can be well approximated by an integration scheme—the symplectic Euler scheme—when the product of time step h and highest frequency n p is of order 1, that is, when high frequencies are underresolved. For 1/2<p<1 the numerical solution is found to converge to the exact solution at a reduced rate of |log h| h 2–1/p . These results shed light on existing numerical data.  相似文献   

20.
A deterministic equation of the Hamilton-Jacobi type is proposed for a single particle:S t+(1/2m)(?S)2+U{S}=0, whereU{S} is a certain operator onS, which has the sense of the potential of the self-generated field of a free particle. Examples are given of potentials that imply instability of uniform rectilinear motion of a free particle and yieldrandom fluctuations of its trajectory. Galilei-invariant turbulence-producing potentials can be constructed using a single universal parameter—Planck's constant. Despite the fact that the classical trajectory concept is retained, the mechanics of the particle then admits quantum-type effects: an uncertainty relation, de Broglie-type waves and their interference, discrete energy levels, and zero-point fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号