首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Physically natural assumption says that any relaxation process taking place in the time interval [t0,t2], t2>t00 may be represented as a composition of processes taking place during time intervals [t0,t1] and [t1,t2] where t1 is an arbitrary instant of time such that t0t1t2. For the Debye relaxation such a composition is realized by usual multiplication which claim is not valid any longer for more advanced models of relaxation processes. We investigate the composition law required to be satisfied by the Cole-Cole relaxation and find its explicit form given by an integro-differential relation playing the role of the time evolution equation. The latter leads to differential equations involving fractional derivatives, either of the Caputo or the Riemann-Liouville senses, which are equivalent to the special case of the fractional Fokker-Planck equation satisfied by the Mittag-Leffler function known to describe the Cole-Cole relaxation in the time domain.  相似文献   

5.
6.
7.
We find that the bulk moment of inertia per unit volume of a metal becoming superconducting increases by the amount me/(πrc), with me the bare electron mass and rc=e2/mec2 the classical electron radius. This is because superfluid electrons acquire an intrinsic moment of inertia me(2λL)2, with λL the London penetration depth. As a consequence, we predict that when a rotating long cylinder becomes superconducting its angular velocity does not change, contrary to the prediction of conventional BCS-London theory that it will rotate faster. We explain the dynamics of magnetic field generation when a rotating normal metal becomes superconducting.  相似文献   

8.
9.
10.
《Physics letters. A》2020,384(27):126687
We investigate the phase transitions in the Ising model on a layered square lattice with first-(J1) and second-(J2) neighbor intralayer interactions and interlayer couplings (J). The thermodynamics of the system is evaluated within a cluster mean-field approximation, which allows us to identify the nature of the thermally driven phase transitions hosted by the model. As a result, we find that interlayer couplings reduce the region of first-order phase transitions between paramagnetic and superantiferromagnetic states. We also find that the interlayer couplings reduce the frustration effects by reducing the entropy content of the low-temperature phases. Our results suggest that tricriticality is present in the special case J=J1, which is in qualitative agreement with recent Monte Carlo simulations for the model.  相似文献   

11.
In this paper, we discuss a method based on wavelet analysis for the study of the q-index of the Gaussian distribution. We derive q-index from the scale index, iscale, using the expression; q1+2iscale where iscale is a wavelet based tool for measuring the degree of aperiodicity of a dynamical system in the range of 0iscale1. We show that this expression gives consistent results with the numerical approach of q-Gaussian distribution which determines the degree of non-extensivity of a dynamical system in the range of 1<q<3. We also suggest a new entropy calculation method based on the normalized inner scalogram for studying the chaotic characteristics of nonlinear dynamical systems.  相似文献   

12.
This work is devoted to quantify the predictive uncertainty in RANS simulation of a non-premixed lifted flame due to uncertainty in the model parameters of the scalar dissipation rate transport equation. The uncertainty propagation and the global sensitivity analysis of the effect of such parameters on the quantities of interest (QoIs) is performed employing Polynomial Chaos Expansions as surrogate models of the uncertain response. This approach is applied on a lifted methane-air jet flame in vitiated coflow, already experimentally investigated by Cabra et al [1]. The results show the effectiveness of the approach to provide predictions with estimates of uncertainty. It is shown that the the uncertainty in the mixture fraction and temperature is negligible as long as only pure mixing happens, then it becomes significant in the regions where ignition begins, starting from z/D=30. Of the four parameters considered, i.e., CD1, CD2, CP1 and CP2, main and total effect sensitivity indices show that the largest contribution to the uncertainty in the flame temperature is given by the two dissipation parameters CD1 and CD2, while the production parameter CP2 has almost negligible impact on the predictions. Lastly, the surrogate models are used to determine an optimum set of parameters that minimizes the distance with the experimental measures, leading to improved predictions of the QoIs.  相似文献   

13.
14.
15.
An investigation into the superconducting order parameter thermodynamic fluctuations and their manifestations on paraconductivity in cuprate superconductors is done using a renormalized Gaussian approach based on the Ginzburg–Landau theory. The temperature dependence of paraconductivity is affected by repulsive interactions between Cooper pairs and does not follow the universal power laws predicted by the conventional Aslamazov–Larkin theory. In addition to the well known Lawrence–Doniach crossover from three to two dimensions, we also highlight the crossover from one-dimensional to two-dimensional behavior and the crossover from weak two-dimensional to strong two-dimensional critical behavior in the vicinity of the critical temperature. These dimensional crossovers result from the resistance between Cooper pairs due to critical and thermal fluctuations which cause a transition from a metastable state to one with a smaller current. Two illustrative examples (the cases of YBa2Cu3O6.9 and Bi2Sr2CaCu30x compounds) are provided in support of the analysis, so as to demonstrate the usefulness of the approach.  相似文献   

16.
17.
18.
BN-AlN alloys are potential candidates to achieve wide band gap material for ultraviolet device applications. By combing density functional theory and evolutionary structure predictions, we systematically explore the thermodynamic, mechanical, dynamical and optical properties of BxAl1?xN alloys. Through structure search, three compounds (cubic (BAl3N4, and B3AlN4, space group P-43m), and tetragonal (BAlN2, space group P-42m)) have been predicted. The calculated relative large formation enthalpies suggest that large miscibility gap exists in BAlN alloys. In addition, computed elastic constants and phonon show that these structures are mechanically and dynamically stable. From the state of the art LDA-1/2 we show that the direct band gap of BN-AlN evinces strong deviation from a linear dependence on B composition. We found -in particular- giant direct band gap bowing parameter of b11.6 eV for the entire range of composition, where b parameter is found to be sensitive to composition x. From a detailed analysis of the physical origin of the optical gap bowing b, we found that structural and chemical contributions play the most significant effects behind the huge optical band gap bowing parameter of BAlN alloys.  相似文献   

19.
20.
First principle calculations have been employed to investigate the effects of Y concentration, pressure and temperature on various properties of Gd1?xYxAuPb (x=0,0.25,0.5,0.75,1) alloys using density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) is used to perform the calculated results of this paper. Phase stability of Gd1?xYxAuPb alloys is studied using the total energy versus unit cell volume calculations. The equilibrium lattice parameters of these alloys are in good agreement with the available experimental results. The mechanical stability of Gd1?xYxAuPb alloys is proved using elastic constants calculations. Also, the influence of Y concentration on elastic properties of Gd1?xYxAuPb alloys such as Young's modulus, shear modulus, Poisson's ratio and anisotropy factor are investigated and analyzed. By considering both Pugh's ratio and Poisson's ratio, the ductility and brittleness of these alloys are studied. In addition, the total density of states and orbital's hybridizations of different atoms are investigated and discussed. Moreover, the effect of pressure and temperature on some important thermodynamic properties is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号