首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Using the two-mode two-photon Jaynes-Cummings model, entanglement transfer between atoms and field is studied. It is found that when the field is in state constructed from the two-mode photon number states |00〉,|11〉 or the two-mode squeezed vacuum states, full entanglement exchange can be attained no matter the atoms are initially in pure or mixed states. These investigations show that CV entangled states can act as perfectly as the entangled number states in entangling initially separable atoms. The two-mode two-photon atom-field interaction also provides a simple way for the quantum teleportation of atomic or field states.  相似文献   

2.
We have studied the effect of environment induced pure decoherence on the generalized Jaynes-Cummings model (JCM). This generalized JCM is introduced to take into account both atom-field interaction and a class of spin-orbit interactions in the same framework. For generalized JCM with atom-field interaction, it is shown that along with the suppression of the oscillatory behaviour of the atomic and field variables, in the steady state, atomic energy is transferred to the field or vice versa through the dressed state coherence depending on the initial condition of the atom-field system and the model under consideration. It is also shown that initial Poissonian field acquires a sub-Poissonian character in the steady state and thus all the nonclassical properties are not erased by the decoherence in JCM. An interesting effect of this decoherence mechanism is that it affects the population and coherence properties of the individual subsystem in a different way. As an example of generalized JCM with spin-orbit interaction, the dynamics of spin of the hydrogen atom in a magnetic field is studied to show the effect of decoherence.  相似文献   

3.
刘小娟  刘一曼  周并举 《物理学报》2010,59(12):8518-8525
给出了依赖强度耦合双模多光子过程Jaynes-Cummings模型的有效哈密顿量.在强场条件下,分别用量子约化熵和量子相对熵研究了上述模型中原子与场之间的纠缠以及双模相干场的模间纠缠演化.研究表明,这两类纠缠演化均与原子跃迁时吸收(或发射)的光子数k密切相关.同时,还揭示了双光子过程(k=1)和多光子过程(k≥2)中不同的纠缠特性.讨论了纠缠态的制备,制备了与时间无关的原子-场的Einstein-Podolsky-Rosen态和双模相干场的模间纠缠态.  相似文献   

4.
We study a generalized cold atom Bose-Hubbard model, where the periodic optical potential is formed by a cavity field with quantum properties. On the one hand, the common coupling of all atoms to the same mode introduces cavity-mediated long-range atom-atom interactions, and, on the other hand, atomic backaction on the field introduces atom-field entanglement. This modifies the properties of the associated quantum phase transitions and allows for new correlated atom-field states, including superposition of different atomic quantum phases. After deriving an approximative Hamiltonian including the new long-range interaction terms, we exhibit central physical phenomena at generic configurations of few atoms in few wells. We find strong modifications of population fluctuations and next-nearest-neighbor correlations near the phase transition point.  相似文献   

5.
We studied the entanglement of a quantum system consisting of a Jaynes-Cummings atom, thermal lossless cavity and an isolated atom. The analytical expressions of the atom-atom negativity for separable and entangled initial atomic states were obtained. The influence of a detuning between the atomic transition frequency and the field frequency and direct dipole-dipole interaction on an atom-atom entanglement is examined. We showed that for a separable initial atomic states a detuning might cause high atom-atom entanglement in the presence of the dipole-dipole interaction. We also obtained that for an entangled initial atomic state a detuning causes a stabilization of an entanglement oscillations both for model with dipole-dipole interaction and model without such interaction.  相似文献   

6.
We investigate the entanglement of an open tripartite system where a cavity field mode in thermal equilibrium is off-resonantly coupled with two atoms that are simultaneously driven by a resonant coherent field. For moderately detuned atom-field coupling and strong atomic driving we show the generation, at given interaction times and for low enough cavity decay rates, of atomic Bell states and of Bell state superpositions relevant for quantum gates implementation. The system can oscillate between bi-separable and fully separable states. Also we describe the distribution of quantum correlations between the atom-atom and the two atom-field subsystems. In the dispersive coupling regime with strongly driven atoms we show the generation of nearly stationary Bell states which remain protected from cavity dissipation.  相似文献   

7.
基于J-C模型,研究了相干迭加光场与二能级原子相互作用时的量子动力学行为,讨论了迭加态的相位对原子的量子崩塌-回复特性的影响.  相似文献   

8.
双光子Jaynes—Cummings模型中初始原子相干性对辐射场...   总被引:2,自引:0,他引:2  
本文研究了任意初态的双光子Jaynes-Cummings模型的一般演化规律,着重于分析初始原子相干性对辐射场压缩行为的影响,作为例子,讨论了一个任意初态的二能级原子与真空态和相干态光场相互作用时辐射场的压缩.数值计算了各种条件下辐射场压缩的时间演化.  相似文献   

9.
本文研究了任意初态的双光子Jaynes-Cummings模型的一般演化规律,着重于分析初始原子相干性对辐射场压缩行为的影响,作为例子,讨论了一个任意初态的二能级原子与真空态和相干态光场相互作用时辐射场的压缩.数值计算了各种条件下辐射场压缩的时间演化.  相似文献   

10.
A modified Jaynes-Cummings model which consists of a two-level atom interacting with two modes of the electromagnetic field is introduced. More precisely we have considered a Hamiltonian model that includes two types of interaction: One is the field-field (frequency converter type) and the other is the atom-field interaction. By invoking a canonical transformation an exact solution of the wave function in the Schrödinger picture is obtained. The result presented in this context is used to discuss the atomic inversion as well as the entropy squeezing and variance squeezing phenomena. We have shown that the existence of the second field coupling parameter reduces the amount of squeezing in all quadratures, while the effect of the detuning parameter would lead to the superstructure phenomenon which becomes more pronounced upon increasing the mean photon numbers, in the states which are taken to be converter states.  相似文献   

11.
研究了两个二能级原子与一个单模腔场的相互作用中,腔场的不同初始态对原子间相对位置退相干的影响。从描述原子间相对位置状态的约化密度矩阵出发,假设原子间相对位置为两个高斯波包的叠加态,讨论了当腔场初始态分别为热态、Fock态和压缩态情况下,原子与光场的相互作用对两原子间相对位置相干性的影响。发现腔场的初始态不同,原子间相对位置的退相干情况有所不同。当腔场初始态为热态或Fock态时,原子间相对位置的相干性会周期性的衰减和回复,而当腔场初始态为压缩态时,原子间相对位置会出现部分退相干,且退相干程度与原子间相对位置的大小成余弦变化关系。  相似文献   

12.
Wen-Chao Qiang  W.B. Cardoso 《Physica A》2010,389(21):5109-4055
The dynamics of an entangled atomic system, partially interacting with entangled cavity fields and characterizing an entanglement swapping, has been studied through their von Neumann entropies. The aforementioned interaction is implemented via a two-photon process, given by either the full microscopical Hamiltonian approach or the two-photon Jaynes-Cummings model. Numerical simulations furnish the explicit expressions for each sub-system entropy, which allow us to estimate the multiperiodicity in the evolution of the entangled atom-field system. The effects of the detuning parameter upon the period and the amplitude of the entropies are also discussed as well as the power spectrum of the entropy.  相似文献   

13.
The temporal evolution of both the atomic population inversion of an effective two-level atom and the cross correlation between the two modes in two-photon Jaynes-Cummings model in the presence of a classical homogeneous gravitational field are investigated. To analyse the dynamical evolution of the atom-radiation system a quantum treatment of the internal and external dynamics of the atom is presented based on an alternative su(2) dynamical algebraic structure. By solving the Schr?dinger equation in the interaction picture, the evolving state of the system is found by which the influence of the gravitational field on the dynamical behavior of both the atomic population inversion of an effective two-level atom and the cross correlation between the two modes of the radiation field are explored. Assuming that initially the radiation field is prepared in the coherent state for each mode and an effective two-level atom is in a coherent superposition of the excited and ground states, the influence of gravity on both the atomic population inversion of an effective two-level atom and the cross correlation between the two modes of the radiation field are studied.  相似文献   

14.
The stability and instability of quantum evolution are analyzed in the interaction of a two-level atom with a quantized-field mode in an ideal cavity with allowance for photon recoil, which is the basic model of cavity QED. It is shown that the Jaynes-Cammings quantum dynamics can be unstable in the regime of the random walk of the atom in the quantized field of a standing wave in the absence of any interaction with the environment. This instability is manifested in large fluctuations of the quantum entropy, which correlate with a classical-chaos measure, the maximum Lyapunov exponent, and in the exponential sensitivity of the fidelity of the quantum states of the strongly coupled atom-field system to small variations of resonance detuning. Numerical experiments reveal the sensitivity of the atomic population inversion to the initial conditions and to correlation between the quantum and classical degrees of freedom of the atom.  相似文献   

15.

We investigate the entanglement dynamics of two atoms in a double damping Jaynes-Cummings model. The two atoms are initially in the Bell states and each is in a squeezed vacuum cavity field or coherent cavity field. Compared with the case in coherent field, the atomic entanglement in the squeezed vacuum field is stronger under the same conditions. The results show that we can adopt appropriate parameters such as mean photon number, detuning, the atomic spontaneous decay and the cavity decay, to realize better control of atomic entanglement in quantum information processing. What’s worth mentioning is that proper choosing of the last two parameters enables us to decrease disentanglement period and postpone the moment when the entanglement disappears. Finally, the atomic entanglement in double damping and non-identical Jaynes-Cummings model is obtained

  相似文献   

16.
A numerical analysis of dispersive quantum nondemolition measurement of the photon number of a microwave cavity field is presented. Simulations show that a key property of the dispersive atom-field interaction used in Ramsey interferometry is the extremely high sensitivity of the dynamics of atomic and field states to basic parameters of the system. When a monokinetic atomic beam is sent through a microwave cavity, a qualitative change in the field state can be caused by an uncontrollably small deviation of parameters (such as atom path length through the cavity, atom velocity, cavity mode frequency detuning, or atom-field coupling constants). The resulting cavity field can be either in a Fock state or in a super-Poissonian state (characterized by a large photon-number variance). When the atoms have a random velocity spread, the field is squeezed to a Fock state for arbitrary values of the system’s parameters. However, this makes detection of Ramsey fringes impossible, because the probability of detecting an atom in the upper or lower electronic state becomes a random quantity almost uniformly distributed over the interval between zero and unity, irrespective of the cavity photon number.  相似文献   

17.
Using an echo technique proposed by Morigi et al., we have time-reversed the atom-field interaction in a cavity quantum electrodynamics experiment. The collapse of the atomic Rabi oscillation in a coherent field is reversed, resulting in an induced revival signal. The amplitude of this "echo" is sensitive to nonunitary decoherence processes. Its observation demonstrates the existence of a mesoscopic quantum superposition of field states in the cavity between the collapse and the revival times.  相似文献   

18.
We propose a scheme for deterministic generation of entanglement embodied by two L\Lambda -type atoms distributed in two coupled cavities. We study such a system in the dispersive atom-field interactions, where the dynamics of the system operates through the virtual population of both the atomic excited states and the photonic states in the cavities (plus the fiber). We verify the validity of the dynamics, and moreover, study the influences of the decoherence due to the spontaneous emission and photon leakage. We also apply the dynamics for realizing quantum state transfer and quantum phase gates.  相似文献   

19.
Kerr介质中J-C模型的色散近似耗散动力学   总被引:1,自引:0,他引:1  
应用全量子论研究了含Kerr介质的Jaynes-Cummings模型在色散近似下系统和子系统的相干性丢失及纠缠特性,在输入场为相干场假设下计算了线性熵.结果表明,原子相干性丢失与Kerr效应无关,场和原子-场系统的相干性丢失因Kerr介质的存在而增强,原子与场之间的纠缠因Kerr效应而受到压制,场的相干性时间演化规律在定性和定量两方面都受到腔耗的影响.Kerr介质对场线性熵的作用要通过腔耗才能展现出来.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号