首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A selective and sensitive fluorescent chemosensor for Hg2+, which was composed of two aminonaphthalimide fluorophores and a receptor of 2,6-bis(aminomethyl)pyridine, was synthesized through the reaction of 2,6-bis(chloromethyl)pyridine and N-[2-(2-hydroxyethoxy)ethyl]-4-piperazino-1,8-naphthalimide. The chemosensor showed an about 17-fold increase in fluorescence quantum yield upon addition of 1 equiv of Hg2+ in neutral buffer aqueous solution, and the other common metal ions did not notably disturb the detection of Hg2+.  相似文献   

2.
We have successfully developed a ‘turn-on’ colorimetric chemosensor for Fe3+ based on 1,10-phenanthroline. An amide derivative of 1,10-phenanthroline 4 was developed for the selective recognition of Fe3+ over Co2+, Cr3+, Cu2+, Mn2+, Ni2+, Ag+ and Zn2+ and could measure Fe3+ concentration in the range of 15–210 μM by UV–vis spectroscopy. Moreover, the addition of Fe3+ to a colourless solution of 4 turned its colour to light pink, indicating that 4 is capable of detecting Fe3+ by the naked eye. Compound 4 exhibits a major absorption band centred at 268 which shifted to 278 nm after addition of Fe3+, and a shoulder band around 514 nm was also observed. The complexation of Fe3+ with 4 was analysed at a different pH and favourable binding was observed at pH 6.2.  相似文献   

3.
A new rhodamine-based Hg2+-selective fluorescent probe (I) was designed and synthesized. Compound I displays excellent selective and sensitive response to Hg2+ over other transition metal ions in neutral aqueous solutions. I itself is a colorless, nonfluorescent compound. Upon addition of Hg2+ to its solution, the thiosemicarbazide moiety of I undergoes an irreversible desulfurization reaction to form the corresponding 1,3,4-oxadiazole (II), a colorful and fluorescent product, causing instantaneous development of visible color and strong fluorescence emission. Based on this mechanism, a fluorogenic probe for Hg2+ was developed. The fluorescence increases linearly with the Hg2+ concentration up to 0.8 μmol L−1 with the detection limit of 9.4 nmol L (3σ).  相似文献   

4.
A selective and sensitive fluorescent sensor for detection of Hg2+ in natural water was achieved by incorporating the well-known fluorophore quinoline group and a water-soluble D-glucosamine group within one molecule.  相似文献   

5.
A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media was developed. The system, which utilizes an irreversible Hg2+-promoted oxadiazole forming reaction, responds instantaneously at room temperature in a 1:1 stoichiometric manner to the amount of Hg2+. The selectivity of this system for Hg2+ over other metal ions is remarkably high, and its sensitivity is below 2 ppb in aqueous solutions.  相似文献   

6.
Tan J  Yan XP 《Talanta》2008,76(1):9-14
We report a simple twisted intramolecular charge transfer (TICT) chromogenic chemosensor for rapid and selective detection of Hg(2+) and Cu(2+). The sensor was composed of an electron-acceptor 4-fluoro moiety and an electron-donor 7-mercapto-2,1,3-benzoxadiazole species where the S together with the 1-N provided the soft binding unit. Upon Hg(2+) and Cu(2+) complexation, remarkable but different absorbance spectra shifts were obtained in CH(3)CN-H(2)O mixed buffer solution at pH 7.6, which can be easily used for naked-eye detection. The sensor formed a stable 2:1 complex with Cu(2+), and both 2:1 and 3:1 complexes with Hg(2+). While alkali-, alkaline earth- and other heavy and transition metal ions such as Na(+), Mg(2+), Mn(2+), Co(2+), Ni(2+), Ag(+), Zn(2+), Pb(2+) and Cd(2+) did not cause any significant spectral changes of the sensor. This finding is not only a supplement to the detecting methods for Hg(2+) and Cu(2+), but also adds new merits to the chemistry of 4,7-substituted 2,1,3-benzoxadiazoles.  相似文献   

7.
A novel fluorescent Hg~(2 ) chemosensor based on dithia-dioxa-monoaza crown ether was synthesized in four steps from inexpensive starting materials.This new sensor exhibited very strong fluorescence response to Hg~(2 ) (F_(Hg~(2 ))/F_(free)>130) and it was highly selective to Hg~(2 ) over the other metal ions by more than 45-fold.  相似文献   

8.
9.
A new fluorescent ‘‘on–off' chemosensor for Hg2+initiated by a derivative of rhodamine B was designed and synthesized. Compound 1 exhibited high sensitivity and selectivity for Hg2+over other commonly coexistent metal ions in aqueous media. Upon the addition of Hg2+, the spirocyclic ring of probe is opened and a significant enhancement of visible color and fluorescence in the range of 500–600 nm is observed. The colorimetric and fluorescent response to Hg2+can be conveniently detected by the naked eye, which provides a facile method for visual detection of Hg2+. From the molecular structure and spectral results of 1, an irreversible, hydrolysis, desulfurization reaction mechanism is proposed.  相似文献   

10.
Research on Chemical Intermediates - The development of selective, efficient, and economical sensors for the rapid determination of arsenic in an aqueous medium is of paramount importance, due to...  相似文献   

11.
A highly selective and sensitive ratiometric fluorescent chemosensor for Ag(+) in aqueous solution was developed, in a linear range of 0.6 × 10(-7) to 50 × 10(-7) mol L(-1), based on a A-Ag(+)-A binding mode with a heptamethine cyanine motif containing one adenine moiety.  相似文献   

12.
Honglei Mu 《Tetrahedron letters》2007,48(31):5525-5529
A novel two-channel metal ion sensor has been synthesized from macrocyclic dioxotetraamine and 1,8-naphthalimide derivative. The metal ion-selective signaling behaviors of the sensor were investigated. The sensor presented the selective coloration for Cu2+ and Hg2+ that can be detected by the naked-eye, respectively. Besides, the addition of Cu2+ and Hg2+ quenched the fluorescence of 1 obviously and the detection limit was found to be 3 × 10−7 M for Cu2+ and 7 × 10−7 M for Hg2+. This sensor can be utilized for the visual and spectroscopic detection of Cu2+ or Hg2+ in the presence of the other competing metal ions.  相似文献   

13.
Chen C  Wang R  Guo L  Fu N  Dong H  Yuan Y 《Organic letters》2011,13(5):1162-1165
A novel squaraine-based chemosensor SQ-1 has been synthesized, and its sensing behavior toward various metal ions was investigated by UV-vis and fluorescence spectroscopies. In AcOH-H(2)O (40:60, v/v) solution, Hg(2+) ions coordinate with SQ-1 causing a deaggregation which induces a visual color and absorption spectral changes as well as strong fluorescence. In contrast, the addition of other metals (e.g., Pb(2+), Cd(2+), Cu(2+), Zn(2+), Al(3+), Ni(2+), Co(2+), Fe(3+), Ca(2+), K(+), Mg(2+), Na(+), and Ag(+)) does not induce these changes at all. Thus SQ-1 is a specific Hg(2+) sensing agent due to the inducing deaggregation of the dye molecule by Hg(2+).  相似文献   

14.
A new indole-based fluorescent chemosensor 1 was prepared and its metal ion sensing properties were investigated. It exhibits high sensitivity and selectivity toward Hg2+ among a series of metal ions in H2O-EtOH (7:1, v/v). The association constant of the 1:1 complex formation for 1-Hg2+ was calculated to be 9.57 × 103 M−1, and the detection limit for Hg2+ was found to be 2.25 × 10−5 M. Computational results revealed that 1 and Hg2+ ion formed with a central tetrahedron-coordinated Hg2+.  相似文献   

15.
A rhodamine-based chemosensor that works in the biological system   总被引:1,自引:0,他引:1  
A new rhodamine-based reversible chemosensor (L1 ) is reported, which could bind Hg2+ and Cu2+ in aqueous methanol solution with detectable change in color. Cu2+ and Hg2+ ions responded differently toward the fluorescence output signals on binding to L1.L1 could also be used as a selective probe for monitoring Hg2+ adsorbed on bacteria using an optical microscope.  相似文献   

16.
Amidothiourea linked acridinedione derivatives selectively detect Hg(2+) in unbuffered aqueous solution under broad pH range with both single- and two-photon excitation. The observed linear fluorescence intensity change allows the quantitative detection of Hg(2+) in the concentration range of 22 nM-0.33 μM with the lower detection limit of 2 nM.  相似文献   

17.
18.
A novel S,S′-diallyl carbohydrazonodithioate derivative 3 of rhodamine B hydrazone was developed as a chemodosimeter for selective detection of mercury ions based on Hg2+ promoted cyclization. The allyl groups of 3 play a key role in the binding and selection of Hg2+ ions. The probe responds selectively to Hg2+ over various other competitive cations with marked chromo- and fluorogenic changes. The formation of stable oxadiazole derivative 8 was a strong driving force for this high selectivity. Practically, this probe is more promising because of the remarkable high selectivity, faster response, low detection limit, and aqueous solubility of 3.  相似文献   

19.
Thakur A  Sardar S  Ghosh S 《Inorganic chemistry》2011,50(15):7066-7073
The synthesis, electrochemical, optical, and metal-cation-sensing properties of ferrocene-glycine conjugates C(30)H(38)O(8)N(8)Fe (2) and C(20)H(24)O(4)N(4)Fe (3) have been documented. Both compounds 2 and 3 behave as very selective redox (ΔE(1/2) = 217 mV for 2 and ΔE(1/2) = 160 mV for 3), chromogenic, and fluorescent chemosensors for Hg(2+) cations in an aqueous environment. The considerable changes in their absorption spectra are accompanied by the appearance of a new low-energy peak at 630 nm (2, ε = 1600 M(-1) cm(-1); 3, ε = 822 M(-1) cm(-1)). This is also accompanied by a strong color change from yellow to purple, which allows a prospective for the "naked eye" detection of Hg(2+) cations. These chemosensors present immense brightness and fluorescence enhancement (chelation-enhanced fluorescence = 91 for 2 and 42 for 3) following Hg(2+) coordination within the limit of detection for Hg(2+) at 7.5 parts per billion.  相似文献   

20.
[reaction: see text] A novel chemosensor based on semisquaraine dye (SSQ) for selective detection of Hg2+ is described. SSQ is obtained in quantitative yields from the reaction between squaric acid and 6-ethoxy-2-quinaldinium iodide. SSQ in combination with surfactant shows a dual chromogenic and fluorogenic response selectively toward Hg2+ as compared to Li+, Na+, K+, Ag+, Ca2+, Mg2+, Zn2+, Pb2+, Cd2+, Cu2+, and Fe3+ due to the soft acid nature and size of the mercuric ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号