首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Migration of graphene fragments along the aluminum matrix in the solid phase was studied by molecular dynamics. The structure of the Al–C nanocomposite grain was studied by statistical geometry. The distributions of the topological and metric characteristics of truncated polyhedra were calculated for the Al subsystem; the distributions for the polyhedra constructed at the centers of mass of the hypothetical geometrical neighbors were calculated for the carbon subsystem. The graphene fragments are concentrated at the structural grain boundaries. The nanocomposite grains are preferably separated by single-layer graphene rather than by the two-layer graphene membrane.  相似文献   

2.
In order to elucidate the presence of non-localized states in doped graphene, a scaling analysis of the wavefunction moments, known as inverse participation ratios, is performed. The model used is a tight-binding Hamiltonian considering nearest and next-nearest neighbors with random substitutional impurities. Our findings indicate the presence of non-normalizable wavefunctions that follow a critical (power-law) decay, which show a behavior intermediate between those of metals and insulators. The power-law exponent distribution is robust against the inclusion of next-nearest neighbors and growing the system size.  相似文献   

3.
利用第一性原理方法研究了一氧化碳分子在本征和硼、氮、铝、磷掺杂的有限尺寸石墨烯上的吸附机理.结果表明,石墨烯作为一氧化碳传感器时的性能依赖于掺杂元素.本征、硼和氮掺杂石墨烯吸附一氧化碳时的吸附能较低,为物理吸附.铝、磷掺杂石墨烯的吸附能显著提高,比本征、硼和氮掺杂时高出约一个数量级,且铝和磷原子从石墨烯中突出,使其发生局部弯曲.铝掺杂石墨烯增强了石墨烯与一氧化碳分子之间的相互作用,可以提高石墨烯的气敏性和吸附能力,是一氧化碳传感器的最佳候选材料之一.  相似文献   

4.
The relative distribution of rare-earth ions R3+ (Dy3+ or Ho3+) in the phosphate glass RAl(0.30)P(3.05)O(9.62) was measured by employing the method of isomorphic substitution in neutron diffraction. It is found that 7.9(7) R-R nearest neighbors reside at 5.62(6) A in a network made from interlinked PO4 tetrahedra. Provided that the role of Al is explicitly considered, a self-consistent account of the local matrix atom correlations can be developed in which there are 1.68(9) bridging and 2.32(9) terminal oxygen atoms per phosphorus.  相似文献   

5.
利用等离子增强化学气相沉积方法,在铜粉表面原位生长了站立石墨烯,用于制备石墨烯强化铜基复合材料.研究表明,石墨烯包覆在铜粉外表面,微观尺度实现了两者的均匀混合;生长的初期阶段,碳、氢等离子基团可将铜粉表面的氧化层还原,有助于铜粉-石墨烯之间形成良好的界面;石墨烯的成核是一个生长/刻蚀相互竞争的过程,其尺寸可受制备温度调控.利用放电等离子烧结方法将粉末压制成型,测试结果显示,添加石墨烯样品的电阻率降低了一个数量级,维氏硬度和屈服强度分别提高了15.6%和28.8%.  相似文献   

6.
石墨烯/银纳米复合材料的制备及其影响因素研究   总被引:2,自引:0,他引:2       下载免费PDF全文
范冰冰  郭焕焕  李稳  贾瑜  张锐 《物理学报》2013,62(14):148101-148101
以硝酸银、鳞片石墨为原料, 在强碱环境下, 制备得到石墨烯/银纳米复合材料, 采用X射线衍射、红外吸收光谱、透射电子显微镜、紫外可见分光光度计对所制备的石墨 烯/银纳米复合材料进行了表征.结果表明: 氧化石墨烯和银离子在强碱NaOH的作用下, 氧化石墨烯失去部分含氧官能团, 被部分还原为石墨烯(rGO), 银离子被还原为纳米银颗粒, 均匀分布在氧化石墨烯片层表面, 颗粒大小和分布受硝酸银用量、反应温度、NaOH的加入顺序及前驱物混合方式等因素影响, 在GO与Ag粒子质量比为 1:1.08时, 负载在石墨烯片层上的银纳米颗粒集中在12 nm左右. 关键词: 石墨烯/银纳米复合材料 强碱溶液  相似文献   

7.
本文采用粉末套管法成功制备出氧化石墨烯增强的 GO/Cu-Nb 多芯(192 芯) 复合线材及未掺杂氧化石墨烯的 Cu-Nb 多芯(192 芯) 复合线材. 通过金相、SEM 及拉曼光谱等表征不同尺寸下两种复合线材的芯丝组态、 界面特征及特征峰. 结果表明, 氧化石墨烯由于良好的自润滑特性较好地协调了芯丝与基体的变形, 其弥散分布有效阻隔了 Nb 颗粒团聚及大尺寸晶粒的产生, 芯丝变形更均匀, 形态更规则. 力学和电学性能测试结果表明, 掺杂氧化石墨烯后,Cu-Nb 复合线材的力学与电学性能均明显提升, 分析认为, 氧化石墨烯的尺寸大小、 分散均匀性及热处理是影响线材综合性能提升的主要原因.  相似文献   

8.
A molecular structural mechanics model for the numerical simulation of phonon dispersion relations of graphene is developed by relating the C-C bond molecular potential energy to the strain energy of the equivalent beam-truss space frame. With the stiffness matrix known and further based on the periodic structure characteristics, the Bloch theorem is introduced to develop the dispersion relation of graphene sheet. Being different from the existing structural mechanics model, interactions between the fourth-nearest neighbor atoms are further simulated with beam elements to compensate the reduced stretching stiffness, where as a result not only the dispersion relations in the low frequency field are accurately achieved, but results in the high frequency field are also reasonably obtained. This work is expected to provide new opportunities for the dynamic properties analysis of graphene and future application in the engineering sector.  相似文献   

9.
In-plane elastic instability of bilayer graphene sheets is investigated using atomistic finite element approaches. The equivalent homogenised properties of graphene sheet are expressed in terms of the thickness, equilibrium lengths and force-field models used to represent the C–C bonds of the graphene lattice. The covalent bonds are represented as structural beams with stretching, bending, torsional and shear deformation, and the strain energies associated to affine deformation mechanisms. The overall mechanical properties and geometric configurations of the nano-structures represented as truss assemblies are then calculated minimising the total potential energy associated to the loading, thickness and average equilibrium lengths of the bonds. Different boundary conditions and aspect ratios are considered for both bilayer and single-layer graphene sheets. The bilayer graphene sheets are found to be offering remarkably higher buckling strengths as compared to single-layer sheets.  相似文献   

10.
Optical excitations in hexagonal nanonetwork materials, for example, Boron-Nitride (BN) sheets and nanotubes, are investigated theoretically. Exciton dipoles directed from the B site to the N site are considered along the BN bond. When the exciton hopping integral is restricted to the nearest neighbors, two flat bands of excitons appear. The symmetry of these exciton bands is optically forbidden. Possible relations to experiment are discussed.  相似文献   

11.
Lithium intercalated bilayer graphene has been investigated using first-principles density functional theory calculations. Results show that there exist AB and AA stacking sequences for bilayer graphene in which the latter is more favorable for the Li storage and the former will evolve into the latter with the intercalation of Li ions. The relationship between the interlayer distance of two graphene sheets and the intercalated capacity of Li ions is discussed. It is found that structural defect is identified to store Li ions more favorably than pristine bilayer graphene and an isolated C atom vacancy in bilayer graphene can capture three Li ions between two graphene sheets.  相似文献   

12.
Many papers have studied the free vibration of graphene sheets. However, all this papers assumed their atomic structure free of any defects. Nonetheless, they actually contain some defects including single vacancy, double vacancy and Stone-Wales defects. This paper, therefore, investigates the free vibration of defective graphene sheets, rather than pristine graphene sheets, via nonlocal elasticity theory. Governing equations are derived using nonlocal elasticity and the first-order shear deformation theory (FSDT). The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defective graphene sheets. Afterwards, these equations solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in the governing equations of motion by nonlocal parameter. The effects of different defect types are inspected for graphene sheets with clamped or simply-supported boundary conditions on all sides. It is shown that the natural frequencies of graphene sheets decrease by introducing defects to the atomic structure. Furthermore, it is found that the number of missing atoms, shapes and distributions of structural defects play a significant role in the vibrational behavior of graphene. The effect of vacancy defect reconstruction is also discussed in this paper.  相似文献   

13.
A simplified Olami-Feder-Christensen model on a random network has been studied. We propose a new toppling rule — when there is an unstable site toppling, the energy of the site is redistributed to its nearest neighbors randomly not averagely. The simulation results indicate that the model displays self-organized criticality when the system is conservative, and the avalanche size probability distribution of the system obeys finite size scaling. When the system is nonconservative, the model does not display scaling behavior. Simulation results of our model with different nearest neighbors q is also compared, which indicates that the spatial topology does not alter the critical behavior of the system.  相似文献   

14.
The results from quantitative investigations into the structural phase state of finely dispersed titanium before and after implantation with aluminum ions are presented. Two types of ??-Ti grains differing by phase composition, defect structure, and size are distinguished in the structure: fine grains in the range of 0.1?C0.5 ??m and coarse grains in the range of 0.5?C5 ??m. The presence of two types of TiO2 particles in the material, i.e., rounded particles found at dislocations in the bulk of the ??-Ti grains and lamellar particles found only inside coarse ??-Ti grains, is established. The formation of the Ti3Al phase is observed in the form of lamellar inclusions along the grain boundaries and rounded particles in triple joints. It is found that the particles of the TiAl3 phase are isolated with a smaller volume fraction than the Ti3Al phase; they are localized along the boundaries of coarse grains of the titanium matrix. It is established that the granular state and defect structure of the material change substantially after ion irradiation; i.e., the dislocation density and the fields of internal stresses in fine grains grow considerably, relative to the initial state of titanium.  相似文献   

15.
《Current Applied Physics》2014,14(9):1176-1180
We demonstrated the improved performance of near UV (365 nm) InGaN/AlGaN-based LEDs using highly reflective Al-based p-type reflectors with graphene sheets as a diffusion barrier. The use of graphene sheets did not degrade the reflectance of ITO/Al contacts, viz. ∼81% at 365 nm. The ITO/graphene/Al contacts annealed at 300 °C exhibited better ohmic behavior with a specific contact resistance of 1.5 × 10−3 Ωcm2 than the ITO/Al contact (with 9.5 × 10−3 Ωcm2). Near UV LEDs fabricated with the ITO/graphene/Al contact annealed at 300 °C showed a 7.2% higher light output (at 0.1 W) than LEDs with the ITO/Al reflector annealed at 300 °C. The SIMS results exhibited that, unlike the ITO/graphene/Al, the ITO/Al contacts undergo a significant indiffusion of Al atoms toward the GaN after annealing. Furthermore, both Ga and Mg atoms were also more extensively outdiffused in the ITO/Al contacts after annealing. On the basis of the SIMS and electrical results, the possible explanations for the annealing-induced degradation of the ITO/Al contacts are described and discussed.  相似文献   

16.
In this article, an atomistic model is developed to study the buckling and vibration characteristics of single-layered graphene sheets (SLGSs). By treating SLGSs as space-frame structures, in which the discrete nature of graphene sheets is preserved, they are modeled using three-dimensional elastic beam elements for the bonds. The elastic moduli of the beam elements are determined via a linkage between molecular mechanics and structural mechanics. Based on this model, the critical compressive forces and fundamental natural frequencies of single-layered graphene sheets with different boundary conditions and geometries are obtained and then compared. It is indicated that the compressive buckling force decreases when the graphene sheet aspect ratio increases. At low aspect ratios, the increase of aspect ratios will result in a significant decrease in the critical buckling load. It is also indicated that increasing aspect ratio at a given side length results in the convergence of buckling envelops associated with armchair and zigzag graphene sheets. The influence of boundary conditions will be studied for different geometries. It will be shown that the influence of boundary conditions is not significant for sufficiently large SLGSs.  相似文献   

17.
In the present work, B4C/2024Al composites with volume fraction of 45% were prepared by a pressure infiltration method. The microstructure of the crater bottom of B4C/2024Al composite after impact was characterized by transmission electron microscope (TEM), which indicated that recovery and dynamic recrystallization generated in Al matrix, and the grain size distribution was about from dozens of nanometer to 200 nm. Furthermore, the plastic deformation was observed in B4C ceramic, which led to the transformation from monocrystal to polycrystal ceramic grains. The boundary observed in this work was high-angle grain boundary and the two grains at the boundary had an orientation difference of 30°.  相似文献   

18.
In the framework of the Keating model with allowance made for the anharmonic constant of the central interaction between the nearest neighbors μ, analytical expressions have been obtained for three third-order independent elastic constants c ijk (μ, ζ) of single-layer graphene, where ζ = (2α − β)/(4α + β) is the Kleinman internal displacement parameter and α and β are the harmonic constants of the central interaction between the nearest neighbors and the noncentral interaction between the next-nearest neighbors, respectively. The dependences of the second-order elastic constants on the pressure p have been determined. It has been shown that the moduli c 11 and c 22 differently respond to the pressure. Therefore, graphene is isotropic in the harmonic approximation, whereas the inclusion of anharmonicity leads to the appearance of the anisotropy.  相似文献   

19.
We report a simple and effective supercritical fluid route to uniformly load ultrafine metal nanoparticles on the hydrophobic surfaces of graphene sheets. In the presence of supercritical carbon dioxide, PtRu alloy nanoparticles are decorated evenly on functionalized graphene sheets (FGSs) upon the reduction of organic platinum (II) and ruthenium (III) precursors, and its application as an electrocatalyst for methanol oxidation is studied. Transmission electron microscopy observation shows that highly dispersed PtRu metallic nanoparticles with an average size of about 3.11?nm are uniformly and densely distributed on the hydrophobic surface of FGSs. X-ray diffraction patterns demonstrate that the particles had a face-centered cubic crystal structure, and X-ray photoelectron spectroscopy analysis indicates the existence of zero-valence metals. Compared with the widely used Vulcan XC-72 carbon black, the PtRu/FGS composites exhibit superior catalytic activity and stability for methanol oxidation. The huge surface area of graphene and uniform distribution of nanosized metal particles are two critical factors for the significantly enhanced electrocatalytic efficiency. The findings suggest that the supercritical fluid method is highly efficient in preparing graphene-supported metallic catalysts, and FGSs serve as a favorable electrocatalytic carrier for direct methanol fuel cells.  相似文献   

20.
Q. Wang 《Physics letters. A》2010,374(9):1180-4040
Molecular mechanics simulations for graphene bending rigidity are reported through calculations of the strain energy for graphene sheets subjected to a point loading. The rigidity is found to be dependent on the size and the shape of graphene sheets. Moreover, dependence of the rigidity on the deflection is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号