首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王玉成  刘雄军  陈澍 《物理学报》2019,68(4):40301-040301
准周期晶格在冷原子领域被广泛研究,它使得人们可以在一维或者二维系统里研究扩展到安德森局域的转变. 2008年, Inguscio研究组在冷原子系统里制备了一维准周期晶格,并观测到了安德森局域化现象,这极大地推动了准周期系统的理论和实验研究.后来, Bloch研究组在制备的一维和二维准周期晶格中都观测到了多体局域的现象.最近,他们还在准周期晶格中成功观测到迁移率边以及存在迁移率边的系统的多体局域现象.这些冷原子实验推动了多体局域以及迁移率边等方向的研究.准周期晶格已经成为一个平台,它对很多物理现象的影响正在被广泛研究,并可以尝试在冷原子实验中观测到这种影响.本文结合作者的一些相关工作,对一维准周期晶格一些近期的研究进行了简要综述,介绍了一些相关的重要的冷原子实验,讨论了准周期晶格的一些重要性质,以及它对一些物理现象(比如拓扑态)的影响.  相似文献   

2.
D. Bertrand  M.L. Lyra  C. Argolo 《Physica A》2007,386(2):748-751
In this work we study the critical behavior of a model that simulates the propagation of an epidemic process over a population. We simulate the model on two-dimensional finite lattices to determine the critical density of the diffusive population. A finite size scaling analysis is employed to determine the order parameter and correlation length critical exponents.  相似文献   

3.
In dissipationless linear lattices, spatial disorder or quasiperiodic modulations in on-site potentials induce localization of the eigenstates and block the spreading of wave packets. Quasiperiodic inhomogeneities allow for the metal–insulator transition at a finite modulation amplitude already in one dimension. We go beyond the dissipationless limit and consider nonlinear quasi-periodic arrays that are additionally subjected to dissipative losses and energy pumping. We find finite excitation thresholds for oscillatory phases in both metallic and insulating regimes. In contrast to disordered arrays, the transition in the metallic and weakly insulating regimes display features of the second order phase transition accompanied by a large-scale cluster synchronization. In the limit of strong localization, we find the existence of globally stable asymptotic states consisting of several localized modes. These localization attractors and chaotic synchronization effects can be potentially implemented with polariton condensate lattices and cavity-QED arrays.  相似文献   

4.
Individuals building populations are subject to variability. This variability affects progress of epidemic outbreaks, because individuals tend to be more or less resistant. Individuals also differ with respect to their recovery rate. Here, properties of the SIR model in inhomogeneous populations are studied. It is shown that a small change in model’s parameters, e.g. recovery or infection rate, can substantially change properties of final states which is especially well-visible in distributions of the epidemic size. In addition to the epidemic size and radii distributions, the paper explores first passage time properties of epidemic outbreaks.  相似文献   

5.
《Physics letters. A》2020,384(7):126152
Derived from quantum waves immersed in an Abelian gauge potential, the quasiperiodic Aubry-André-Harper (AAH) model is a simple yet powerful Hamiltonian to study the Anderson localization of ultracold atoms. Here, we investigate the localization properties of ultracold atoms in quasiperiodic optical lattices subject to a non-Abelian gauge potential, which are depicted by non-Abelian AAH models. We identify that the non-Abelian AAH models can bear the self-duality. We analyze the localization of such non-Abelian self-dual optical lattices, revealing a rich phase diagram driven by the non-Abelian gauge potential involved: a transition from a pure delocalization phase, then to coexistence phases, and finally to a pure localization phase. This is in stark contrast to the Abelian counterpart that does not support the coexistence phases. Our results establish the connection between localization and gauge symmetry, and thus comprise a new insight on the fundamental aspects of localization in quasiperiodic systems, from the perspective of non-Abelian gauge potential.  相似文献   

6.
One-dimensional quasiperiodic structures whose period is much smaller than the wavelength of exciting radiation have been obtained on a titanium surface under the multipulse action of linearly polarized femtosecond laser radiation with various surface energy densities. As the radiation energy density increases, the one-dimensional surface nanorelief oriented perpendicularly to the radiation polarization evolves from quasiperiodic ablation nanogrooves to regular lattices with subwave periods (100–400 nm). In contrast to the preceding works for various metals, the period of lattices for titanium decreases with increasing energy density. The formation of the indicated surface nanostructures is explained by the interference of the electric fields of incident laser radiation and a surface electromagnetic wave excited by this radiation, because the length of the surface electromagnetic wave for titanium with significant interband absorption decreases with an increase in the electron excitation of the material.  相似文献   

7.
Identifying the most influential spreaders is one of outstanding problems in physics of complex systems. So far, many approaches have attempted to rank the influence of nodes but there is still the lack of accuracy to single out influential spreaders. Here, we directly tackle the problem of finding important spreaders by solving analytically the expected size of epidemic outbreaks when spreading originates from a single seed. We derive and validate a theory for calculating the size of epidemic outbreaks with a single seed using a message-passing approach. In addition, we find that the probability to occur epidemic outbreaks is highly dependent on the location of the seed but the size of epidemic outbreaks once it occurs is insensitive to the seed. We also show that our approach can be successfully adapted into weighted networks.  相似文献   

8.
Using the inflation-deflation symmetry, we have developed a new real-space decimation approach to study the electronic properties of one-dimensional quasiperiodic lattices. The key result is the construction of a compact renormalization group that allows simple calculation of the average Green's function and the average density of states to any degree. The Fibonacci and the generalized Fibonacci lattices are used to demonstrate the method. Numerical results for the average density of states of these lattices show a good agreement with the results obtained by other methods. This confirms the validity and the efficiency of the approach.  相似文献   

9.
We study the critical behavior of certain two-parameter families of correlated percolation models related to the Ising model on the triangular and square lattices, respectively. These percolation models can be considered as interpolating between the percolation model given by the + and – clusters and the Fortuin-Kasteleyn correlated percolation model associated to the Ising model. We find numerically on both lattices a two-dimensional critical region in which the expected cluster size diverges, yet there is no percolation.  相似文献   

10.
Statistics of particles adsorbed on the lattice with a complex elementary cell are analyzed by employing the transfer-matrix technique. The results obtained are compared with those given by the cluster approximation and also with the experimental data for the CO/Ni(100) system. The transfer-matrix technique is shown to be very effective for studies of two-dimensional systems with complex lattices.  相似文献   

11.
《Physics letters. A》1986,114(2):95-98
Clusters of different size and symmetry are exploited in the study of the diluted transverse Ising model on several lattices within the mean field renormalization group approach. It is noticed that the critical exponents depend both on the size of clusters as well as on the cluster symmetry. Harris' conjecture is verified for all lattices studied.  相似文献   

12.
It is shown that the Fisher droplet model, percolation, and nuclear multifragmentation share the common features of reducibility (stochasticity in multiplicity distributions) and thermal scaling (one-fragment production probabilities are Boltzmann factors). Barriers obtained, for cluster production on percolation lattices, from the Boltzmann factors show a power-law dependence on cluster size with an exponent of 0.42+/-0.02. The EOS Collaboration Au multifragmentation data yield barriers with a power-law exponent of 0.68+/-0.03. Values of the surface energy coefficient of a low density nuclear system are also extracted.  相似文献   

13.
We study the growth dynamics of ordered structures of strongly interacting polar molecules in optical lattices. Using a dipole blockade of microwave excitations, we map the system onto an interacting spin-1/2 model possessing ground states with crystalline order, and describe a way to prepare these states by nonadiabatically driving the transitions between molecular rotational levels. The proposed technique bypasses the need to cross a phase transition and allows for the creation of ordered domains of considerably larger size compared to approaches relying on adiabatic preparation.  相似文献   

14.
We study the classic Susceptible-Infected-Recovered (SIR) model for the spread of an infectious disease. In this stochastic process, there are two competing mechanism: infection and recovery. Susceptible individuals may contract the disease from infected individuals, while infected ones recover from the disease at a constant rate and are never infected again. Our focus is the behavior at the epidemic threshold where the rates of the infection and recovery processes balance. In the infinite population limit, we establish analytically scaling rules for the time-dependent distribution functions that characterize the sizes of the infected and the recovered sub-populations. Using heuristic arguments, we also obtain scaling laws for the size and duration of the epidemic outbreaks as a function of the total population. We perform numerical simulations to verify the scaling predictions and discuss the consequences of these scaling laws for near-threshold epidemic outbreaks.  相似文献   

15.
In this paper, we perform numerical simulations to study Kauffman cellular automata (KCA) on quasiperiod lattices. In particular, we investigate phase transition, magnetic entropy, and propagation speed of the damage on these lattices. Both the critical threshold parameter \(p_{c}\) and the critical exponents are estimated with good precision. In order to investigate the increase of statistical fluctuations and the onset of chaos in the critical region of the model, we have also defined a magnetic entropy to these systems. It is seen that the magnetic entropy behaves in a different way when one passes from the frozen regime (p < pc) to the chaotic regime (p > pc). For a further analysis, the robustness of the propagation of failures is checked by introducing a quenched site dilution probability q on the lattices. It is seen that the damage spreading is quite sensitive when a small fraction of the lattice sites are disconnected. A finite-size scaling analysis is employed to estimate the critical exponents. From these numerical estimates, we claim that on both pure (q =?0) and diluted (q =?0.05) quasiperiodic lattices, the KCA model belongs to the same universality class than on square lattices. Furthermore, with the aim of comparing the dynamical behavior between periodic and quasiperiodic systems, the propagation speed of the damage is also calculated for the square lattice assuming the same conditions. It is found that on square lattices the propagation speed of the damage obeys a power law as \(v\sim (p-p_{c})^{\alpha }\), whereas on quasiperiod lattices, it follows a logarithmic law as \(v \sim \ln (p-p_{c})^{\alpha }\).  相似文献   

16.

Vacancy ordered phases in the Al-Cu-Ni system have an arrangement of vacant and filled sites in the truncated Fibonacci sequence along the [111] direction. The length scales involved are commensurate and in the limit a quasiperiodic superlattice is obtained. The implication of having commensurate length scales and quasiperiodicity in conjunction is studied using the concept of average lattices and projection formalism.  相似文献   

17.
In this paper, the study of epidemic spreading of mobile individuals on networks focuses on the system in which each node of the network may be occupied by either one individual or a void, and each individual could move to a neighbour void node. It is found that for the susceptible-infected-susceptible (SIS) model, the diffusion increases the epidemic threshold for arbitrary heterogeneous networks having the degree fluctuations, and the diffusion doesn??t affect the epidemic threshold for regular random networks. In the SI model, the diffusion suppresses the epidemic spread at the early outbreak stage, which indicates that the growth time scale of outbreaks is monotonically increasing with diffusion rate d. The heterogeneous mean-field analysis is in good agreement with the numerical simulations on annealed networks.  相似文献   

18.
In this work, we study the effects of embedding a system of non-linear phase oscillators in a two-dimensional scale-free lattice. In order to analyze the effects of the embedding, we consider two different topologies. On the one hand, we consider a scale-free complex network where no constraint on the length of the links is taken into account. On the other hand, we use a method recently introduced for embedding scale-free networks in regular Euclidean lattices. In this case, the embedding is driven by a natural constraint of minimization of the total length of the links in the system. We analyze and compare the synchronization properties of a system of non-linear Kuramoto phase oscillators, when interactions between the oscillators take place in these networks. First, we analyze the behavior of the Kuramoto order parameter and show that the onset of synchronization is lower for non-constrained lattices. Then, we consider the behavior of the mean frequency of the oscillators as a function of the natural frequency for the two different networks and also for different values of the scale-free exponent. We show that, in contrast to non-embedded lattices that present a mean-field-like behavior characterized by the presence of a single cluster of synchronized oscillators, in embedded lattices the presence of a diversity of synchronized clusters at different mean frequencies can be observed. Finally, by considering the behavior of the mean frequency as a function of the degree, we study the role of hubs in the synchronization properties of the system.  相似文献   

19.
The transition regime to spatio-temporal chaos via the quasiperiodic route as well as the period-doubling route is examined for coupled-map lattices. Space-time renormalization-group analysis is carried out and the scaling exponents for the coherence length, the Lyapunov exponent, and the size of the phase fluctuations are determined. Universality classes for the different types of coupling at various routes to chaos are identified.  相似文献   

20.
Algorithms for estimating the percolation probabilities and cluster size distribution are given in the framework of a Monte Carlo simulation for disordered lattices for the generalized site-bond problem. The site-bond approach is useful when a percolation process cannot be exclusively described in the context of pure site or pure bond percolation. An extended multiple labeling technique (ECMLT) is introduced for the generalized problem. The ECMLT is applied to the site-bond percolation problem for square and triangular lattices. Numerical data are given for lattices containing up to 16 million sites. An application to polymer gelation is suggested.Supported by NSF Grant DMR76-07832 and NIH Grant NS08116-9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号