首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The non-equilibrium electron–positron–photon plasma thermalization process is studied using relativistic Boltzmann solver, taking into account quantum corrections both in non-relativistic and relativistic cases. Collision integrals are computed from exact QED matrix elements for all binary and triple interactions in the plasma. It is shown that in non-relativistic case (temperatures kBT0.3mec2) binary interaction rates dominate over triple ones, resulting in establishment of the kinetic equilibrium prior to final relaxation towards the thermal equilibrium, in agreement with the previous studies. On the contrary, in relativistic case (final temperatures kBT0.3mec2) triple interaction rates are fast enough to prevent the establishment of kinetic equilibrium. It is shown that thermalization process strongly depends on quantum degeneracy in initial state, but does not depend on plasma composition.  相似文献   

2.
We find that the bulk moment of inertia per unit volume of a metal becoming superconducting increases by the amount me/(πrc), with me the bare electron mass and rc=e2/mec2 the classical electron radius. This is because superfluid electrons acquire an intrinsic moment of inertia me(2λL)2, with λL the London penetration depth. As a consequence, we predict that when a rotating long cylinder becomes superconducting its angular velocity does not change, contrary to the prediction of conventional BCS-London theory that it will rotate faster. We explain the dynamics of magnetic field generation when a rotating normal metal becomes superconducting.  相似文献   

3.
4.
Physically natural assumption says that any relaxation process taking place in the time interval [t0,t2], t2>t00 may be represented as a composition of processes taking place during time intervals [t0,t1] and [t1,t2] where t1 is an arbitrary instant of time such that t0t1t2. For the Debye relaxation such a composition is realized by usual multiplication which claim is not valid any longer for more advanced models of relaxation processes. We investigate the composition law required to be satisfied by the Cole-Cole relaxation and find its explicit form given by an integro-differential relation playing the role of the time evolution equation. The latter leads to differential equations involving fractional derivatives, either of the Caputo or the Riemann-Liouville senses, which are equivalent to the special case of the fractional Fokker-Planck equation satisfied by the Mittag-Leffler function known to describe the Cole-Cole relaxation in the time domain.  相似文献   

5.
6.
《Physics letters. A》2020,384(36):126930
We consider quantum bosons with contact interactions at the Lowest Landau Level (LLL) of a two-dimensional isotropic harmonic trap. At linear order in the coupling parameter g, we construct a large, explicit family of quantum states with energies of the form E0+gE1/4+O(g2), where E0 and E1 are integers. Any superposition of these states evolves periodically with a period of 8π/g until, at much longer time scales of order 1/g2, corrections to the energies of order g2 may become relevant. These quantum states provide a counterpart to the known time-periodic behaviors of the corresponding classical (mean field) theory.  相似文献   

7.
A “cut-off” Coulomb potential taking into account the finite size of the nucleus is finite, and a solution of the Dirac equation can be constructed for any energy, both positive and negative. In the paper we develop an exact solution of the Dirac equation for a fixed value of the total momentum j for the whole spectrum of energies, which allows us to determine the vacuum charge and its spatial distribution. We consider nuclei with different charges Z, both Z<Zc and Z>Zc, where Z=Zc is the “critical” charge, at which the energy of the lowest discrete state reaches the boundary of the lower continuum ε=?mc2. Polarization of vacuum is determined, and the vacuum charge for several values of Z is found. For an undercritical nuclear charge, Z<Zc, the total vacuum charge appears to be zero, while for Z>Zc, the vacuum gets rearranged, and the total vacuum charge becomes equal to ?2e. The vacuum charge distribution for j=1/2 for both undercritical and overcritical nuclei is calculated.  相似文献   

8.
Excited beryllium has been observed to decay into electron-positron pairs with a 6.8σ anomaly. The process is properly explained by a 17 MeV proto-phobic vector boson. In present work, we consider a family-nonuniversal U(1) that is populated by a U(1) gauge boson Z and a scalar field S, charged under U(1) and singlet under the Standard Model (SM) gauge symmetry. The SM chiral fermion and scalar fields are charged under U(1) and we provide them to satisfy the anomaly-free conditions. The Cabibbo-Kobayashi-Maskawa (CKM) matrix is reproduced correctly by higher-dimension Yukawa interactions facilitated by S. The vector and axial-vector current couplings of the Z boson to the first generation of fermions do satisfy all the bounds from the various experimental data. The Z boson can have kinetic mixing with the hypercharge gauge boson and S can directly couple to the SM-like Higgs field. The kinetic mixing of Z with the hypercharge gauge boson, as we show by a detailed analysis, generates the observed beryllium anomaly. We find that beryllium anomaly can be properly explained by a MeV-scale sector with a minimal new field content. The minimal model we construct forms a framework in which various anomalous SM decays can be discussed.  相似文献   

9.
A contour deformation method (CDM) in the complex momentum plane has been successfully extended and implemented to probe resonances in atomic and molecular systems. Specifically, solution of the Schrödinger equation is performed in momentum space with momentum deformed on a contour in the complex plane. The bound, resonant, and complex continuum states could be directly revealed from the eigenvalues of the Schrödinger equation in the complex momentum plane. The calculations of shape resonances in electron scattering with Na+ in Debye plasmas (one channel), and in the charge transfer process H?(1s2)+Li(1s22s) (12Σ+) H(1s)+Li?(1s22s2) (22Σ+) (coupled channels) are given as illustrative examples. It is shown that calculated results from CDM agree very well with those extracted from the eigenphase sum of scattering theories. The effectiveness of CDM is also demonstrated by comparing its results with those obtained by the complex rotation scaling and exterior complex scaling methods. The convergence of CDM results can be obtained by increasing the momentum integration region and the number of integration points. The studied examples demonstrate that CDM could be a powerful tool for studies of resonances in complex atomic and molecular systems.  相似文献   

10.
《Physics letters. A》2019,383(17):2114-2119
We provide a detailed analysis of a topological structure of a fermion spectrum in the Hofstadter model with different hopping integrals along the x,y,z-links (tx=t,ty=tz=1), defined on a honeycomb lattice. We have shown that the chiral gapless edge modes are described in the framework of the generalized Kitaev chain formalism, which makes it possible to calculate the Hall conductance of subbands for different filling and an arbitrary magnetic flux ϕ. At half-filling the gap in the center of the fermion spectrum opens for t>tc=2ϕ, a quantum phase transition in the 2D-topological insulator state is realized at tc. The phase state is characterized by zero energy Majorana states localized at the boundaries. Taking into account the on-site Coulomb repulsion U (where U<<1), the criterion for the stability of a topological insulator state is calculated at t<<1, tU. Thus, in the case of U>4Δ, the topological insulator state, which is determined by chiral gapless edge modes in the gap Δ, is destroyed.  相似文献   

11.
12.
In this paper, we discuss a method based on wavelet analysis for the study of the q-index of the Gaussian distribution. We derive q-index from the scale index, iscale, using the expression; q1+2iscale where iscale is a wavelet based tool for measuring the degree of aperiodicity of a dynamical system in the range of 0iscale1. We show that this expression gives consistent results with the numerical approach of q-Gaussian distribution which determines the degree of non-extensivity of a dynamical system in the range of 1<q<3. We also suggest a new entropy calculation method based on the normalized inner scalogram for studying the chaotic characteristics of nonlinear dynamical systems.  相似文献   

13.
14.
15.
16.
High pressure can effectively control the phase transition of MoTe2 in experiment, but the mechanism is still unclear. In this work, we show by first-principles calculations that the phase transition is suppressed and 1T phase becomes more stable under high pressure, which originates from the pressure-induced change of the interlayer band occupancies near the Fermi energy. Specifically, the interlayer states of 1T phase tend to be fully occupied under high pressure, while they keep partially occupied for the Td phase. The increase of the band occupancies makes the 1T phase more favorable in energy and prevents the structure changing from 1T to Td phase. Moreover, we also analyze the superconductivity under high pressure based on BCS theory by calculating the density of states and phonon spectra. Our results may shed some light on understanding the relationship between the interlayer band occupancy and crystal stability of MoTe2 under high pressures.  相似文献   

17.
Singly-excited states of the two-electron atom cease being bound when Z1 (from above), the outer orbital becoming infinitely diffuse. The asymptotic relationslimZ1?(Z?1)k(1sns)1,3S|r12k|(1sns)1,3S=(n?1)s(0)|rk|(n?1)s(0), where k=?1,1,2,3,?, are demonstrated to hold. Here, (n?1)s(0) is a hydrogenic s orbital with principal quantum number (n?1). New, more nuanced light is shed on the already challenged dogma that the Pauli principle keeps the electrons further apart in the triplet than in the corresponding singlet.  相似文献   

18.
S. Nazir 《Physics letters. A》2019,383(16):1977-1982
Interfacial magnetism and magnetic anisotropy constant (Ki) in Co/MgO heterostructure have been studied using ab-initio density functional calculations. It is found that interfacial Co spin magnetic moment shows a strong interdependence on Co-O bond lengths and a reasonable spin-polarization of ~80% is established as a function of Co layers. Our results revealed a saturated positive (out-of-plane) Ki of +2.80 mJ/m2 at ≥12 Co layers (~1.6 nm Co thickness), which is associated with orbital magnetic moment difference in [100] and [001] direction along with a strong hybridization between dxy and dx2?y2 orbitals through orbital angular momentum operator Lz?. Furthermore, it is shown that the Ki magnitude almost remains constant and weakens in the case of under- and over-oxidations in the interfacial MgO and Co layers, respectively. Interestingly, Ki improved for oxygen migrated interface due to enhanced dxy and dx2?y2 orbitals coupling. The disordered interfaces stability is checked by analyzing the formation energy. Hence, the present findings disclose that the higher Co thickness in ordered Co/MgO structure supports to out-of-plane [001] (positive) Ki, which could be useful for its technological implementation in high-density magnetic data storage devices with high thermal stability.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号