首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I–V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.  相似文献   

2.
ZnSe thin films were deposited onto Corning glass and silicon substrates using thermal evaporation. The samples were prepared at different substrate temperatures. The thin films’ surface chemical composition was determined through Auger electron spectroscopy (AES). AES signals corresponding to Zn and Se were only detected in AES spectra. The samples’ crystallographic structure was studied through X-ray diffraction. The material crystallised in the cubic structure with preferential orientation (111). Optical properties of the ZnSe films were studied over two energy ranges via electron energy loss spectroscopy (10–90 eV) and spectral transmittance measurements (0.4–4 eV). In both cases, the spectral variation of the refractive index and the absorption coefficient were determined by fitting the experimental results with well-established theoretical models. Experimental values for the material’s gap were also found, and photoconductivity (PC) measurements were carried out. Transitions between bands, usually labelled ΓV8 → ΓC6 and ΓV7 → ΓC6, were found in the optical and PC responses. A wide spectral photoconductive response between 300 and 850 nm was found in the ZnSe/Si samples prepared at 250 °C substrate temperature.  相似文献   

3.
Zinc selenide nanocrystalline thin films are grown onto amorphous glass substrate from an aqueous alkaline medium, using chemical bath deposition (CBD) method. The ZnSe thin films are annealed in air for 4 h at various temperatures and characterized by structural, morphological, optical and electrical properties. The as-deposited ZnSe film grew with nanocrystalline cubic phase alongwith some amorphous phase present in it. After annealing metastable nanocrystalline cubic phase was transformed into stable polycrystalline hexagonal phase with partial conversion of ZnSe into ZnO. The optical band gap, Eg, of as-deposited film is 2.85 eV and electrical resistivity of the order of 106-107 Ω cm. Depending upon annealing temperature, decrease up to 0.15 eV and 102 Ω cm were observed in the optical band gap, Eg, and electrical resistivity, respectively.  相似文献   

4.
《Physics letters. A》2020,384(24):126557
The possibility of maximum transmittance at lower thickness of light transmitting ZnS layer and its optimization by air-annealing as an alternative to hazardous and expensive CdS is reported in this communication in order to achieve better buffer layer for solar cells. Thin films of ZnS were deposited using e-beam evaporation on glass and ITO substrates and subjected to air-annealing followed by characterizations for physical properties. XRD patterns revealed amorphous behavior which transformed into cubic (111) plane with change of substrate and annealing whereas surface topography reveals hill and deep valley like structures. Optimal transmittance of maximum 95% in visible region, direct band gap of 3.38 eV and maximum electrical conductivity were observed for 200 °C annealed films. The study refers that films annealed at 200 °C are claimed to be suitable for buffer layer applications.  相似文献   

5.
Iodine doped ZnSe thin films were prepared onto uncoated and aluminium (Al) coated glass substrates using vacuum evaporation technique under a vacuum of 3 × 10−5 Torr. The composition, structural, optical and electrical properties of the deposited films were analyzed using Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and study of I-V characteristics, respectively. In the RBS analysis, the composition of the deposited film is calculated as ZnSeI0.003. The X-ray diffractograms reveals the cubic structure of the film oriented along (1 1 1) direction. The structural parameters such as crystallite size, strain and dislocation density values are calculated as 32.98 nm, 1.193 × 10−3 lin−2 m−4 and 9.55 × 1014 lin/m2, respectively. Spectroscopic ellipsometric (SE) measurements were also presented for the prepared iodine doped ZnSe thin films. The optical band gap value of the deposited films was calculated as 2.681 eV by using the optical transmittance measurements and the results are discussed. In the electrical studies, the deposited films exhibit the VCNR conduction mechanism. The iodine doped ZnSe films show the non-linear I-V characteristics and switching phenomena.  相似文献   

6.
In order to study the effect of different buffer layers on the Pb(Zr0.52Ti0.48)O3 (PZT) thin films, 10-nm thick (Pb0.72La0.28)Ti0.93O3 (PLT) and Pb(Zr0.52Ti0.48)O3 buffer layers have been deposited on the Pt(1 1 1)/Ti/SiO2/Si substrates by pulsed laser deposition, respectively. The top buffer layers were also deposited on PZT thin films with the same thickness of the seed layers in order to enhance the fatigue characteristics of PZT thin films. We compared the results of dielectric constant, hysteresis loops and fatigue resistance characteristics. It was found that the dielectric properties of PZT thin films with PLT buffer layers were improved by comparing with PZT thin films with PZT buffer layers. The polarization characteristics of PZT thin films with PLT buffer layers were observed to be superior to those of PZT thin films using PZT buffer layers. The remanent polarization of PZT thin films showed 36.3 μC/cm2 and 2.6 μC/cm2 each in the case of use PLT and PZT buffer layers. For the switching polarization endurance analysis, PZT thin films with PLT buffer layers showed more excellent result than that of PZT thin films with PZT buffer layers.  相似文献   

7.
In this study, the effects of the annealing duration of a zinc oxide (ZnO) buffer layer on structural and optical properties of ZnO rods grown by a hydrothermal process are discussed. A ZnO buffer layer was deposited on p-type Si (1 1 1) substrates by the metal organic chemical vapor deposition (MOCVD) method. After that, ZnO rods were grown on the ZnO-buffer/Si (1 1 1) substrate by a hydrothermal process. In order to determine the optimum annealing duration of the buffer layer for the growth of ZnO rods, durations ranging from 0.5 to 30 min were tried. The morphology and crystal structure of the ZnO/ZnO-buffer/Si (1 1 1) were measured by field emission scanning electron microscopy (FE-SEM) and x-ray diffraction (XRD). The optical properties were investigated by photoluminescence (PL) measurement.  相似文献   

8.
A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150–350 °C. These films were subjected to the XRD, UV‐Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48–1.64 eV and observed to decrease with thermal annealing. The current–voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.  相似文献   

9.
This paper reports that ion implantation to a dose of 1×1017 ions/cm2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600-900℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600-900℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600- 750℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at \sim 850℃ and \sim 750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900℃.  相似文献   

10.
Thin gallium-doped zinc oxide (in GZO the Ga2O3 contents are approximately 3 wt%) films having different ZnO buffer layers were deposited using radio frequency (rf) magnetron sputtering. The use of a grey-based Taguchi method to determine the processing parameters of ZnO buffer layer deposition has been studied by considering multiple performance characteristics. A Taguchi method with an L9 orthogonal array, signal-to-noise (S/N) ratio, and analysis of variance (ANOVA) is employed to investigate the performance characteristics in the deposition operations. The effect and optimization of ZnO buffer deposition parameters (rf power, sputtering pressure, thickness, and annealing) on the structure, morphology, electrical resistivity, and optical transmittance of the GZO films are studied. Annealing treatment and reduction in thickness resulted in a decrease in root-mean-square (RMS) surface roughness of the ZnO buffer layer. Using the optimal ZnO buffer layer obtained by the application of the grey-based Taguchi method, the electrical resistivity of GZO films was decreased from 2.94×10−3 to 9.44×10−4 Ω cm and the optical transmittance in the visible region was slightly increased from 84.81% to 85.82%.  相似文献   

11.
采用磁控溅射法在硅衬底上制备了LaCoO_3(LCO)薄膜,研究了退火温度对LCO薄膜组织结构、表面形貌及热电特性的影响,并利用X射线衍射仪、原子力显微镜(AFM)、激光导热仪等对LCO薄膜的晶体结构、表面形貌、热扩散系数等进行测量与表征.结果表明:退火温度对LCO薄膜的结晶度、晶粒尺寸和薄膜表面形貌都有较大影响;退火前后LCO薄膜的热扩散系数都随温度的升高而减小,且变化速率逐渐减缓; LCO薄膜的热扩散系数随退化温度的升高先增大后减小.LCO薄膜经过700℃退火后得到最佳的综合性能,其薄膜表面致密、平整,结晶质量最好,热扩散系数最小,热电性能最好.  相似文献   

12.
Z. Bazhan  J. Mazloom 《哲学杂志》2016,96(28):2953-2968
The sol–gel spin-coated nickel ferrite (NF), NiFe2O4, thin films were synthesised and the effect of annealing temperature and compositional ratio on different properties of samples were investigated. Electrochemical performance of the films was measured in the presence of KOH and LiClO4/PC electrolyte. Generally, addition of nickel increases the current density. The NF thin films with molar ratio of 0.5 and annealed at 400 °C have the highest charge density value and the highest capacitance in both electrolytes. Annealing temperature had significant effect on electrochemical properties of NF thin films and the diffusion coefficient enhanced by increasing the annealing temperature. X-ray diffraction patterns of prepared samples showed the rhombohedral structure, hematite phase (α-Fe2O3), of iron oxide sample and the presence of inverse spinel structure confirms the formation of NF. Field emission scanning electron microscopy images revealed that the morphology of films changes from larvae shape to granular structure by nickel incorporation and the grain size increased by raising the annealing temperature. The absorption edge of the hematite shift to higher wavelength by annealing and nickel incorporation and band gap narrowing has been occurred.  相似文献   

13.
彭丽萍  方亮  吴卫东  王雪敏  李丽 《中国物理 B》2012,21(4):47305-047305
Indium-doped ZnO thin films are deposited on quartz glass slides by RF magnetron sputtering at ambient temper- ature. The as-deposited films are annealed at different temperatures from 400 C to 800 C in air for 1 h. Transmittance spectra are used to determine the optical parameters and the thicknesses of the films before and after annealing using a nonlinear programming method, and the effects of the annealing temperatures on the optical parameters and the thickness are investigated. The optical band gap is determined from the absorption coefficient. The calculated results show that the film thickness and optical parameters both increase first and then decrease with increasing annealing temperature from 400 C to 800 C. The band gap of the as-deposited ZnO:In thin film is 3.28 eV, and it decreases to 3.17 eV after annealing at 400 C. Then the band gap increases from 3.17 eV to 3.23 eV with increasing annealing temperature from 400 C to 800 C.  相似文献   

14.
采用溶胶-凝胶工艺在石英衬底上制备ZnO:Al(AZO)薄膜,通过不同温度的退火处理,研究了退火对AZO薄膜结构和光致发光特性的影响。XRD图谱表明:所制备的薄膜具有c轴高度择优取向,随着退火温度的升高,(002)峰的强度逐渐增强,同时(002)峰的半高宽逐渐减小,表明晶粒在不断增大。未退火样品的光致发光(PL)谱由361 nm附近的紫外带边发射峰和500 nm附近的深能级发射峰组成。样品经退火后,以500 nm为中心的绿带发射逐渐减弱,而带边发射强度有所增强,并且逐渐红移到366 nm附近,与吸收边移动的测试结果相吻合。对经过不同时间退火的样品分析表明,AZO薄膜的发光特性与退火时间也有很大关系,时间过短可见波段的发射较强,但时间过长会使晶粒发生团聚,导致紫外发射峰强度减弱。  相似文献   

15.
采用溶胶凝胶法在(0001)Al2O3衬底上制备了不同掺杂原子分数的ZnO:Al薄膜,在Ar气氛中进行了600~950 ℃不同温度的退火处理,研究了掺杂原子分数和退火温度对薄膜光致发光、光吸收和透射的影响。结果显示,薄膜的紫外峰强度随掺杂原子分数和退火温度的提高而增强,与缺陷相关的绿光强度却随着掺杂原子分数和退火温度的提高而降低;薄膜光学带隙随掺杂原子分数的提高从3.21 eV增大到3.25 eV;光吸收在可见光区随着退火温度的升高而增大,在紫外区却随着退火温度的升高而减小,透射与吸收的变化规律相反;薄膜吸收边随退火温度的升高出现轻微的红移。  相似文献   

16.
ZnO thin films grown on Si(1 1 1) substrates by using atomic layer deposition (ALD) were annealed at the temperatures ranging from 300 to 500 °C. The X-ray diffraction (XRD) results show that the annealed ZnO thin films are highly (0 0 2)-oriented, indicating a well ordered microstructure. The film surface examined by the atomic force microscopy (AFM), however, indicated that the roughness increases with increasing annealing temperature. The photoluminescence (PL) spectrum showed that the intensity of UV emission was strongest for films annealed at 500 °C. The mechanical properties of the resultant ZnO thin films investigated by nanoindentation reveal that the hardness decreases from 9.2 GPa to 7.2 GPa for films annealed at 300 °C and 500 °C, respectively. On the other hand, the Young's modulus for the former is 168.6 GPa as compared to a value of 139.5 GPa for the latter. Moreover, the relationship between the hardness and film grain size appear to follow closely with the Hall-Petch equation.  相似文献   

17.
姜海青  姚熹  车俊  汪敏强 《物理学报》2006,55(4):2084-2091
采用溶胶-凝胶工艺与原位生长技术,制备了ZnSe/SiO2复合薄膜.X射线衍射分 析表明薄膜中ZnSe晶体呈立方闪锌矿结构.X射线荧光分析结果显示薄膜中Zn与Se摩尔比为1 ∶1.01—1∶1.19.利用场发射扫描电子显微镜观察了复合薄膜的表面形貌,结果表明复合薄 膜表面既存在尺寸约为400nm的ZnSe晶粒,也存在尺寸小于100nm的ZnSe晶粒.利用椭偏仪测 量了薄膜椭偏角Ψ,Δ与波长λ的关系,采用Maxwell-Garnett有效介质理论对薄膜的光学 常数、厚度、气孔率、ZnS 关键词: 2复合薄膜')" href="#">ZnSe/SiO2复合薄膜 光学性质 椭偏光度法 荧光光谱  相似文献   

18.
Excimer laser annealing (ELA) is frequently employed to fabricate low-temperature polycrystalline silicon films on glass substrate. The grain size and crystallinity of polycrystalline silicon films are significantly affected by the resolidification behavior during ELA. A real-time in situ time-resolved optical measurement system is developed to record the rapid phase transformation process during ELA. The average solidification velocity of liquid-Si is calculated from these optical spectra using MATLAB and Excel softwares. Field emission scanning electron microscopy images reveal maximum grain size of poly-Si films with a diameter of 1 μm, which is obtained in the complete melting regime of both frontside ELA and backside ELA. Recrystallization mechanisms of complete melting of Si thin films in frontside ELA and backside ELA are demonstrated. Resolidification scenarios of partial melting, near-complete melting and complete melting in frontside ELA and backside ELA are proposed.  相似文献   

19.
Float glass substrates covered by high quality ITO thin films (Balzers) were subjected for an hour to single thermal treatments at different temperature between 100 °C and 600 °C. In order to study the electric and optical properties of both annealed and not annealed ITO-covered float glasses, ellipsometry, spectrophotometry, impedance analysis, and X-ray measurements were performed. Moreover, variable angle spectroscopic ellipsometry provides relevant information on the electronic and optical properties of the samples. ITO film is modeled as a dense lower layer and a surface roughness layer. The estimated optical density for ITO and the optical density of the surface roughness ITO layer increases with the annealing temperature. In the near-IR range, the extinction coefficient decreases while the maximum of the absorption in the near UV range shift towards low photon energy as the annealing temperature increases. Spectrophotometry was used to estimate the optical band-gap energy of the samples. The thermal annealing changes strongly the structural and optical properties of ITO thin films, because during the thermal processes, the ITO thin film absorbs oxygen from air. This oxygen absorption decreases the oxygen vacancies therefore the defect densities in the crystalline structure of the ITO thin films also decrease, as confirmed both by ellipsometry and X-ray measurements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号