首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
《Physics letters. A》2020,384(5):126123
Two-dimensional (2D) material of few-layer black phosphorus (BP) has recently attracted extensive interest owing to its tunable band gap and high carrier mobility. We investigate the electronic transport properties of zigzag black phosphorene nanoribbons (ZBPNRs) with asymmetric H, Li, O and Co edge saturations by employing the density functional theory in combination with the non-equilibrium Green's function. The computational results forecast that different types of saturated atoms at both edge of ribbons mainly contribute to the electronic transport properties of molecular junctions. The metal edge saturation of Co atom is used to the one edge of ZBPNR which can induce an identical electronic transport property. Interestingly, the negative differential resistance (NDR) phenomena can be observed in our proposed ZBPNR junctions with an analysis of internal physical mechanism. Our theoretical results could support the possibility of potential applications to design 2D electronic devices based on the material of BP in future.  相似文献   

2.
The graphene and phosphorene nanostructures have a big potential application in a large area of today's research in physics. However, their methods of synthesis still don't allow the production of perfect materials with an intact molecular structure. In this paper, the occurrence of atomic vacancies was considered in the edge structure of the zigzag phosphorene and graphene nanoribbons. For different concentrations of these edge vacancies, their influence on the metallic properties was investigated. The calculations were performed for different sizes of the unit cell. Furthermore, for a smaller size, the influence of a uniform magnetic field was added.  相似文献   

3.
Using nonequilibrium Green?s functions in combination with the density functional theory, we investigated the electronic transport behaviors of zigzag graphene nanoribbon (ZGNR) heterojunctions with different edge hydrogenations. The results show that electronic transport properties of ZGNR heterojunctions can be modulated by hydrogenations, and prominent rectification effects can be observed. We propose that the edge dihydrogenation leads to a blocking of electronic transfer, as well as the changes of the distribution of the frontier orbital at negative/positive bias might be responsible for the rectification effects. These results may be helpful for designing practical devices based on graphene nanoribbons.  相似文献   

4.
We performed density functional theory study on electronic structure, magnetic properties and stability of zigzag MoS2 nanoribbons with a S vacancy (ZMoS2NRs-VS) and considered their different edge passivation. The ZMoS2NR-VS systems are magnetic metals with ferromagnetic (FM) edge states. The magnetic moments are greatly influenced by the site of S vacancy and edge passivation because the vacancy and edge states significantly change the structure of the systems. Importantly, we can achieve distinct FM states such as both edge FM and single edge FM states in the ZMoS2NRs-VS by tuning edge passivated pattern. Additionally, edge passivation can not only tune the magnetism of the ZMoS2NRs-VS but also enhance their stability by eliminating dangling bonds. These interesting findings on the ZMoS2NRs may open the possibility of their application in nanodevices and spintronics.  相似文献   

5.
By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of H-terminated zigzag graphene nanoribbon (H/ZGNR) and O-terminated ZGNR/H-terminated ZGNR (O/ZGNR–H/ZGNR) heterostructure under finite bias. Moreover, the effect of width and symmetry on the electronic transport properties of both models is also considered. The results reveal that asymmetric H/ZGNRs have linear IV characteristics in whole bias range, but symmetric H-ZGNRs show negative differential resistance (NDR) behavior which is inversely proportional to the width of the H/ZGNR. It is also shown that the IV characteristic of O/ZGNR–H/ZGNR heterostructure shows a rectification effect, whether the geometrical structure is symmetric or asymmetric. The fewer the number of zigzag chains, the bigger the rectification ratio. It should be mentioned that, the rectification ratios of symmetric heterostructures are much bigger than asymmetric one. Transmission spectrum, density of states (DOS), molecular projected self-consistent Hamiltonian (MPSH) and molecular eigenstates are analyzed subsequently to understand the electronic transport properties of these ZGNR devices. Our findings could be used in developing nanoscale rectifiers and NDR devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号