首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. A》2019,383(24):3001-3004
We investigate the valley-dependent transport properties of electrons in a magnetic-strain graphene under the modulation of the Schottky metal (SM) stripe. The valley polarization can be achieved in such a graphene due to the effect of the strained barrier rather than the SM stripe. However, the SM stripe can play an important effect on the degree of the valley polarization, which can be easily controlled through changing the position and/or width of the SM stripe. Furthermore, the applied voltage on the SM stripe also can easily modulate the valley polarization. This study is very useful for understanding and designing the valleytronic devices.  相似文献   

2.
《中国物理 B》2021,30(5):57201-057201
Valley filter is a promising device for producing valley polarized current in graphene-like two-dimensional honeycomb lattice materials. The relatively large spin–orbit coupling in silicene contributes to remarkable quantum spin Hall effect, which leads to distinctive valley-dependent transport properties compared with intrinsic graphene. In this paper,quantized conductance and valley polarization in silicene nanoconstrictions are theoretically investigated in quantum spinHall insulator phase. Nearly perfect valley filter effect is found by aligning the gate voltage in the central constriction region. However, the valley polarization plateaus are shifted with the increase of spin–orbit coupling strength, accompanied by smooth variation of polarization reversal. Our findings provide new strategies to control the valley polarization in valleytronic devices.  相似文献   

3.
K.S. Chan 《Physics letters. A》2018,382(7):534-539
There are two valleys in the band structure of graphene zigzag ribbons, which can be used to construct valleytronic devices. We studied the use of a T junction formed by an armchair ribbon and a zigzag ribbon to detect the valley-dependent currents in a zigzag graphene ribbon. A current flowing in a zigzag ribbon is divided by the T junction into the zigzag and armchair leads and this separation process is valley dependent. By measuring the currents in the two outgoing leads, the valley-dependent currents in the incoming lead can be determined. The method does not require superconducting or magnetic elements as in other approaches and thus will be useful in the development of valleytronic devices.  相似文献   

4.
We investigate valley-dependent transport through a graphene sheet modulated by both the substrate strain and the fringe field of two parallel ferromagnetic metal (FM) stripes. When the magnetizations of the two FM stripes are switched from the parallel to the antiparallel alignment, the total conductance, valley polarization and valley conductance excess change greatly over a wide range of Fermi energy, which results from the dependence of the valley-related transmission suppression on the polarity configuration of inhomogeneous magnetic fields. Thus the proposed structure exhibits the significant features of a valley-filtering switch and a magnetoresistance device.  相似文献   

5.
Using the transfer matrix method, spin- and valley-dependent electron transport properties modulated by the velocity barrier were studied in the normal/ferromagnetic/normal monolayer MoS2 quantum structure. Based on Snell’s Law in optics, we define the velocity barrier as ξ=v2/v1 by changing the Fermi velocity of the intermediate ferromagnetic region to obtain a deflection condition during the electron transport process in the structure. The results show that both the magnitude and the direction of spin- and valley-dependent electron polarization can be regulated by the velocity barrier. –100% polarization of spin- and valley-dependent electron can be achieved for ξ>1, while 100% polarization can be obtained for ξ<1. Furthermore, it is determined that perfect spin and valley transport always occur at a large incident angle. In addition, the spin- and valley-dependent electron transport considerably depends on the length kFL and the gate voltage U(x) of the intermediate ferromagnetic region. These findings provide an effective method for designing novel spin and valley electronic devices.  相似文献   

6.
Fei Wan 《中国物理 B》2022,31(7):77302-077302
We study the effect of strain on band structure and valley-dependent transport properties of graphene heterojunctions. It is found that valley-dependent separation of electrons can be achieved by utilizing strain and on-site energies. In the presence of strain, the values of transmission can be effectively adjusted by changing the strengths of the strain, while the transport angle basically keeps unchanged. When an extra on-site energy is simultaneously applied to the central scattering region, not only are the electrons of valleys K and K' separated into two distinct transmission lobes in opposite transverse directions, but the transport angles of two valleys can be significantly changed. Therefore, one can realize an effective modulation of valley-dependent transport by changing the strength and stretch angle of the strain and on-site energies, which can be exploited for graphene-based valleytronics devices.  相似文献   

7.
We theoretically predict the existence of tunneling valley Hall effect and Nernst effect in the normal/strain/normal graphene junctions, where a strained graphene is sandwiched by two normal graphene electrodes. By applying an electric bias a pure transverse valley Hall current with longitudinal charge current is generated. If the system is driven by a temperature bias, a valley Nernst effect is observed, where a pure transverse valley current without charge current propagates. Furthermore, the transverse valley current can be modulated by the Fermi energy and crystallographic orientation. When the magnetic field is further considered, we obtain a fully valley-polarized current. It is expected these features may be helpful in the design of the controllable valleytronic devices.  相似文献   

8.
邓富胜  孙勇  刘艳红  董丽娟  石云龙 《物理学报》2017,66(14):144204-144204
将石墨烯中赝磁场的产生机理运用于光子石墨烯,通过在光子石墨烯中引入晶格有规律单轴形变的方式,理论分析得到了谷依赖的均匀赝磁场,并通过数值模拟的方法观察到明显的谷霍尔效应.这种谷霍尔效应的显著程度随晶格形变度的增加而加强.在具有一定损耗的电介质材料构成的形变光子石墨烯中仍可观察到明显的谷霍尔效应.随着电介质材料损耗的增加,谷霍尔效应导致的波束转弯效果依然能够保持,只是强度逐渐变弱.类似于自旋电子学中的自旋霍尔效应,这种光子石墨烯中等效赝磁场作用下的谷霍尔效应在未来谷极化器件的设计和应用中具有重要意义.  相似文献   

9.
人为操控电子的内禀自由度是现代电子器件的核心和关键.如今电子的电荷和自旋自由度已经被广泛地应用于逻辑计算与信息存储.以二维过渡金属硫属化合物为代表的二维原子层材料由于其具有独特的谷自由度和优异的物理性质,成为了新型谷电子学器件研究的优选材料体系.本文介绍了能谷的基本概念、谷材料的基本物理性质、谷效应的调控和谷电子学器件...  相似文献   

10.
We theoretically investigate the effects of strain-induced pseudomagnetic fields on the transmission probability and the ballistic conductance for Dirac fermion transport in suspended graphene. We show that resonant tunneling through double magnetic barriers can be tuned by strain in the suspended region. The valley-resolved transmission peaks are apparently distinguishable owing to the sharpness of the resonant tunneling. With the specific strain, the resonant tunneling is completely suppressed for Dirac fermions occupying the one valley, but the resonant tunneling exists for the other valley. The valley-filtering effect is expected to be measurable by strain engineering. The proposed system can be used to fabricate a graphene valley filter with the large valley polarization almost 100%.  相似文献   

11.
We propose a workable scheme for generating a bulk valley pump current in a silicene-based device which consists of two pumping regions characterized by time-dependent strain and staggered potentials, respectively. In a one-dimension model, we show that a pure valley current can be generated, in which the two valley currents have the same magnitude but flow in opposite directions. Besides, the pumped valley current is quantized and maximized when the Fermi energy of the system locates in the bandgap opened by the two pumping potentials. Furthermore, the valley current can be finely controlled by tuning the device parameters. Our results are useful for the development of valleytronic devices based on two-dimensional materials.  相似文献   

12.
Materials with large intrinsic valley splitting and high Curie temperature are a huge advantage for studying valleytronics and practical applications. In this work, using first-principles calculations, a new Janus TaNF monolayer is predicted to exhibit excellent piezoelectric properties and intrinsic valley splitting, resulting from the spontaneous spin polarization, the spatial inversion symmetry breaking and strong spin−orbit coupling (SOC). TaNF is also a potential two-dimensional (2D) magnetic material due to its high Curie temperature and large magnetic anisotropy energy. The effective control of the band gap of TaNF can be achieved by biaxial strain, which can transform TaNF monolayer from semiconductor to semi-metal. The magnitude of valley splitting at the CBM can be effectively tuned by biaxial strain due to the changes of orbital composition at the valleys. The magnetic anisotropy energy (MAE) can be manipulated by changing the energy and occupation (unoccupation) states of d orbital compositions through biaxial strain. In addition, Curie temperature reaches 373 K under only −3% biaxial strain, indicating that Janus TaNF monolayer can be used at high temperatures for spintronic and valleytronic devices.  相似文献   

13.
Silicene and related buckled materials are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit coupling and the buckled structure. These materials have potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit coupling. We present a theoretical realization of quantum capacitance which has advantages over the scattering problems of traditional transport measurements. We derive and discuss quantum capacitance as a function of the Fermi energy and temperature taking into account electron–hole puddles through a Gaussian broadening distribution. Our predicted results are very exciting and pave the way for future spintronic and valleytronic devices.  相似文献   

14.
We develop a tight-binding theory to study the electronic transport through an extended line defect in monolayer graphene. After establishing an analytical expression of the transmission probability, we clarify the following issues concerning the valley polarization in the electronic transport process. Firstly, we find that the valley polarization is robust in the total linear dispersion region. More interestingly, we find that the lattice deformation around the line defect play an important role in tuning the incident angle for complete transmission. Finally, we indicate that next nearest neighbor interaction only causes a small suppression to the valley polarization.  相似文献   

15.
With its two degenerate valleys at the Fermi level, the band structure of graphene provides the opportunity to develop unconventional electronic applications. Herein, we show that electron and hole quasiparticles in graphene can be filtered according to which valley they occupy without the need to introduce confinement. The proposed valley filter is based on scattering off a recently observed line defect in graphene. Quantum transport calculations show that the line defect is semitransparent and that quasiparticles arriving at the line defect with a high angle of incidence are transmitted with a valley polarization near 100%.  相似文献   

16.
Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.  相似文献   

17.
《Physics letters. A》2020,384(25):126612
We analytically investigate the transport properties of electron in borophane-based n-p and n-p-n junctions. When the electron beam in n region go through the n-p junction, the beam will be split into two valley-dependent beam in p region. This comes from the valley-dependent refraction angle induced by the anisotropic band structure of borophane. Interestingly, the behavior of valley splitting can be generated in a borophane-based n-p junction naturally without any external modulation methods. Generally, the Klein tunneling is described as the perfect transmission at a zero incident angle of electron regardless of the width and height of potential barrier. However, in a borophane-based n-p-n junction, the anomalous Klein tunneling, i.e., the perfect transmission exists at a nonzero incident angle, is found due to the anisotropic band structure of borophane. Our work designs an alternative valley splitter and provides an insight into the understanding of the Klein tunneling.  相似文献   

18.
《中国物理 B》2021,30(9):97601-097601
Two-dimensional(2 D) magnetic materials have aroused tremendous interest due to the 2 D confinement of magnetism and potential applications in spintronic and valleytronic devices. However, most of the currently 2 D magnetic materials are achieved by the exfoliation from their bulks, of which the thickness and domain size are difficult to control, limiting the practical device applications. Here, we demonstrate the realization of thickness-tunable rhombohedral Cr_2Se_3 nanosheets on different substrates via the chemical vapor deposition route. The magnetic transition temperature at about 75 K is observed. Furthermore, van der Waals heterostructures consisting of Cr_2Se_3 nanosheets and monolayer WS_2 are constructed.We observe the magnetic proximity effect in the heterostructures, which manifests the manipulation of the valley polarization in monolayer WS_2. Our work contributes to the vapor growth and applications of 2 D magnetic materials.  相似文献   

19.
We investigate physical properties that can be used to distinguish the valley degree of freedom in systems where inversion symmetry is broken, using graphene systems as examples. We show that the pseudospin associated with the valley index of carriers has an intrinsic magnetic moment, in close analogy with the Bohr magneton for the electron spin. There is also a valley dependent Berry phase effect that can result in a valley contrasting Hall transport, with carriers in different valleys turning into opposite directions transverse to an in-plane electric field. These effects can be used to generate and detect valley polarization by magnetic and electric means, forming the basis for the valley-based electronics applications.  相似文献   

20.
We investigate the coherent electronic transport properties of square-shaped zigzag graphene nanoconstrictions (ZGNC) under transverse strain using recursive Green’s function method. We find that the low-bias conductance of ZGNCs is monotonically dependent on the strain in contrast to that of zigzag graphene nanoribbons (ZGNRs), which is unaffected by strain. This result suggests that ZGNCs can be used as elementary building blocks in graphene nanomechanical system devices. In addition, a simplified analytical model is employed to qualitatively explain the strain tuning of the low-bias conductance of ZGNCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号