首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
This paper tries to discern the mechanistic features of sonochemical degradation of recalcitrant organic pollutants using five model compounds, viz. phenol (Ph), chlorobenzene (CB), nitrobenzene (NB), p-nitrophenol (PNP) and 2,4-dichlorophenol (2,4-DCP). The sonochemical degradation of the pollutant can occur in three distinct pathways: hydroxylation by OH radicals produced from cavitation bubbles (either in the bubble–bulk interfacial region or in the bulk liquid medium), thermal decomposition in cavitation bubble and thermal decomposition at the bubble–liquid interfacial region. With the methodology of coupling experiments under different conditions (which alter the nature of the cavitation phenomena in the bulk liquid medium) with the simulations of radial motion of cavitation bubbles, we have tried to discern the relative contribution of each of the above pathway to overall degradation of the pollutant. Moreover, we have also tried to correlate the predominant degradation mechanism to the physico-chemical properties of the pollutant. The contribution of secondary factors such as probability of radical–pollutant interaction and extent of radical scavenging (or conservation) in the medium has also been identified. Simultaneous analysis of the trends in degradation with different experimental techniques and simulation results reveals interesting mechanistic features of sonochemical degradation of the model pollutants. The physical properties that determine the predominant degradation pathway are vapor pressure, solubility and hydrophobicity. Degradation of Ph occurs mainly by hydroxylation in bulk medium; degradation of CB occurs via thermal decomposition inside the bubble, degradation of PNP occurs via pyrolytic decomposition at bubble interface, while hydroxylation at bubble interface contributes to degradation of NB and 2,4-DCP.  相似文献   

4.
The cavitation characteristics during the spreading of a pure Sn liquid droplet subjected to ultrasonication were studied for the first time through high-speed photography to reveal the wetting mechanism. Ultrasonic vibration realized the spreading of Sn droplet on the nonwetting pure Al substrate. However, the oxide layer of the substrate at the spreading front is difficult to remove. The high-speed photography result shows that a noncavitation region consistently appears at the spreading front, because the acoustic pressure is below the cavitation threshold of 1.26 MPa. In particular, the width of the noncavitation region gradually increases as the size of the spreading area increases. Such a result accounts for the condition wherein the oxide layer at the spreading front is difficult to remove. Furthermore, the bubble density during spreading gradually decreases due to the decreased acoustic pressure of the thinned liquid. Finally, the bubble dynamics were calculated to verify the wetting mechanism.  相似文献   

5.
6.
The equipment and method for studying transient bubble dynamics are described in simple sonochemical reactors and presented using still frames from high-speed video microscopy (500 fps). Effects on aeration bubbles (mean size 1–3 mm diameter) and the cavitation induced species (<0.5 mm diameter) are studied. The images are computer enhanced to improve interpretation of such features as the maximum ellipsoidal distortion at the nodal sound plane and spherical shape regain with due consideration of energy involved and expansion effects at the nodal sound plane. Also immersion depth/pressure effects, as the bubbles transcend the sound field column, in the cylindrical reactor, are recorded for evaluation of nodal and antinodal sound wave effects. Positions of the nodal and antinodal regions are marked using a novel tungsten halogen bulb technique and verified using the sonoelectroluminescent approach with the classical luminol/hydrogen peroxide chemistry which is enhanced under the sound field conditions.  相似文献   

7.
A theoretical explanation is presented to explain pattern formation during the generation of Faraday waves on a bubble wall. The theory derives the Hamiltonian formulation of the nonlinear bubble dynamics. The nonlinear Schrödinger equation for the envelope of surface modes on the bubble wall has been obtained. The solitary wave solution predicts that the shape distortions should be localized near the equator of the bubble.  相似文献   

8.
9.
Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid–structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution.  相似文献   

10.
11.
Single clouds of cavitation bubbles, driven by 254 kHz focused ultrasound at pressure amplitudes in the range of 0.48–1.22 MPa, have been observed via high-speed shadowgraphic imaging at 1 × 106 frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48 MPa generated shock-waves with an average period of 7.9 ± 0.5 μs, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8 ± 0.3, 15.8 ± 0.3, 19.8 ± 0.2 μs, at pressure amplitudes of 0.64, 0.92 and 1.22 MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) < 0.01 (r = 0.996, taken over all data). Subtracting the isolated acoustic shock profiles from the raw signal collected from the detector, demonstrated the removal of subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200 μm diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0 MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales.  相似文献   

12.
13.
The cavitation-mediated bioeffects are primarily associated with the dynamic behaviors of bubbles in viscoelastic tissues, which involves complex interactions of cavitation bubbles with surrounding bubbles and tissues. The radial and translational motions, as well as the resultant acoustic emissions of two interacting cavitation bubbles in viscoelastic tissues were numerically investigated. Due to the bubble–bubble interactions, a remarkable suppression effect on the small bubble, whereas a slight enhancement effect on the large one were observed within the acoustic exposure parameters and the initial radii of the bubbles examined in this paper. Moreover, as the initial distance between bubbles increases, the strong suppression effect is reduced gradually and it could effectively enhance the nonlinear dynamics of bubbles, exactly as the bifurcation diagrams exhibit a similar mode of successive period doubling to chaos. Correspondingly, the resultant acoustic emissions present a progressive evolution of harmonics, subharmonics, ultraharmonics and broadband components in the frequency spectra. In addition, with the elasticity and/or viscosity of the surrounding medium increasing, both the nonlinear dynamics and translational motions of bubbles were reduced prominently. This study provides a comprehensive insight into the nonlinear behaviors and acoustic emissions of two interacting cavitation bubbles in viscoelastic media, it may contribute to optimizing and monitoring the cavitation-mediated biomedical applications.  相似文献   

14.
In the present paper, the collapsing dynamics of a laser-induced cavitation bubble near the edge of a rigid wall is experimentally investigated with a high-speed photography system. For a symmetrical setup, the two primary control parameters of the bubble collapsing behavior include the equivalent maximum bubble radius and the distance between the bubble and the edge of the rigid wall. Based on the bubble interface deformation during the collapsing process, three typical cases are identified for the categorization of the phenomenon with the influences of the parameters revealed. Through a quantitative analysis of the obtained high-speed photos, the motions of the bubble interface in different directions are given together with the calculations of the bubble centroid. The primary findings of the present paper could be summarized in terms of the bubble-edge distance as follows. When the bubble is close to the edge, the movement of the bubble interface near the edge will be restricted with a clear neck formation in the middle part of the bubble. For this case, the edge could delay the bubble collapsing time up to 22% of the Rayleigh collapsing time. When the bubble is of the medium distance to the edge, the differences of the expansion or shrinkage of the bubble interface among different directions will be reduced with an olive-shaped bubble formed during the collapsing process. For this range of parameters, the bubble moves rapidly toward the edge especially during the final collapsing stage. When the bubble is far away from the edge, the bubble will be a nearly spherical one.  相似文献   

15.
Cavitation intensity has already been used to character the activity or strength of cavitation, and several methods are developed to measure the cavitation intensity. However, the previous definitions of cavitation intensity are often either vague or biased. In this paper, from the point of view of energy, the authors proposed a generalized definition of cavitation intensity, derived an approximate formula to calculate the cavitation intensity and discussed its measure method.  相似文献   

16.
Acoustic cavitation is a very important hydrodynamic phenomenon, and is often implicated in a myriad of industrial, medical, and daily living applications. In these applications, the effect mechanism of liquid surface tension on improving the efficiency of acoustic cavitation is a crucial concern for researchers. In this study, the effects of liquid surface tension on the dynamics of an ultrasonic driven bubble near a rigid wall, which could be the main mechanism of efficiency improvement in the applications of acoustic cavitation, were investigated at the microscale level. A synchronous high-speed microscopic imaging method was used to clearly record the temporary evolution of single acoustic cavitation bubble in the liquids with different surface tension. Meanwhile, the bubble dynamic characteristics, such as the position and time of bubble collapse, the size and stability of the bubbles, the speed of bubble boundaries and the micro-jets, were analyzed and compared. In the case of the single bubbles near a rigid wall, it was found that low surface tension reduces the stability of the bubbles in the liquid medium. Meanwhile, the bubbles collapse earlier and farther from the rigid wall in the liquids with lower surface tension. In addition, the surface tension has no significant influence on the speed of the first micro-jet, but it can substantially increase the speed of second and the third micro-jets after the first collapse of the bubble. These effects of liquid surface tension on the bubble dynamics can explain the mechanism of surfactants in numerous fields of acoustic cavitation for facilitating its optimization and application.  相似文献   

17.
18.
It is well known that the primary Bjerknes force is the origin of the trapping of sonoluminescing bubble in the sound field in liquid. In the present Letter, the quantitative investigation of the behavior of hydrodynamic force on the moving sonoluminescing (SL) bubble introduces the new role of stabilizing the trajectory motion of the bubble for primary Bjerknes force. Using a complete force balanced radial-translational dynamics, it is analytically discussed that by increasing the bubble distance from the antinode of the sound field the increase of the magnitude of inward Bjerknes force, controls the size of the domain of the bubble trajectory. At this time the wake produced by the rapid variation of the bubble's relative translational velocity to the surrounding liquid, changes the bubble direction of motion through the effect of history force. The required momentum for accelerating the SL bubble around the central antinode is produced by the added mass force at the bubble collapse. It is revealed in a re-examination of the coupled radial-translational dynamics for a trapping bubble that because of the bubble lower translational acceleration caused due to the lower added mass force and the bubble attraction towards the acoustic antinodes in presence of inward Bjerknes force, the small bubble will be trapped at the antinode of the sound field.  相似文献   

19.
Bubble behaviors near a boundary in an ultrasonic field are the fundamental forms of acoustic cavitation and of substantial importance in various applications, such as industry cleaning, chemical engineering and food processing. The effects of two important factors that strongly affect the dynamics of a single acoustic cavitation bubble, namely, the initial bubble radius and the standoff distance, were investigated in this work. The temporal evolution of the bubble was recorded using high speed microphotography. Meanwhile, the time of bubble collapse and the characteristics of the liquid jets were analyzed. The results demonstrate that the intensity of the acoustic cavitation, which is characterized by the time of bubble collapse and the liquid jet speed, reaches the optimum level under suitable values of the initial bubble radius and the normalized standoff distance. As the initial bubble radius and the normalized standoff distance increase or decrease from the optimal values, the time of the bubble collapse increases, and the first liquid jet’s speed decreases substantially, whereas the speeds of the second and third liquid jets exhibit no substantial changes. These results on bubble dynamics in an ultrasonic field are important for identifying or correcting the mechanisms of acoustic cavitation and for facilitating its optimization and application.  相似文献   

20.
We focus on a single cavitation bubble driven by ultrasound, a system which is a specimen of forced nonlinear oscillators and is characterized by its extreme sensitivity to the initial conditions. The driven radial oscillations of the bubble are considered to be implicated by the principles of chaos physics and owing to specific ranges of control parameters, can be periodic or chaotic. Despite the growing number of investigations on its dynamics, there is not yet an inclusive yardstick to sort the dynamical behavior of the bubble into classes; also, the response oscillations are so complex that long term prediction on the behavior becomes difficult to accomplish. In this study, the nonlinear dynamics of a bubble oscillator was treated numerically and the simulations were proceeded with bifurcation diagrams. The calculated bifurcation diagrams were compared in an attempt to classify the bubble dynamic characteristics when varying the control parameters. The comparison reveals distinctive bifurcation patterns as a consequence of driving the systems with unequal ratios of (where R0 is the bubble initial radius and λ is the wavelength of the driving ultrasonic wave). Results indicated that systems having the equal ratio of , share remarkable similarities in their bifurcating behavior and can be classified under a unit category.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号