首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
The premicellar and micelle formation behaviors of four cationic triphenylmethane dyes, viz, Pararosaniline (RN), Crystal violet (CV), Ethyl violet (EV), and Malachite green (MG), in aqueous anionic surfactant solutions of sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), and sodium dodecyl sulfonate (SDSN) have been studied by spectral and surface tension measurements. The study was carried out within a pH range where the dyes are stable in their quinoid forms. The dyes have been found to form dye–surfactant ion pairs (DSIPs) with the surfactants, at the surfactant concentrations well below their critical micelle concentration, CMC*. The DSIPs behave like nonionic surfactants and form an air–water interfacial monolayer. The DSIPs have a lower critical micelle concentration (CMCIP), greater efficiency, and lower effectiveness than the corresponding pure surfactants. As the surfactant concentration is increased below the CMC*, the DSIPs start forming micelles of their own where the dye gets protonated and exists as a protonated dye–surfactant ion pair (PDSIP) in the ion pair micelles. As the concentration of the surfactant exceeds the CMC* of the pure surfactant, the protonation reverses gradually with the dye remaining in the micelles in solubilized form and the DSIPs in the air–water interfacial monolayer are replaced by pure surfactants. The distorted helical isomeric form (isomer B) of the dyes is favored in the PDSIPs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
We investigate pair correlations in the two-dimensional Coulomb gas made up of two species of point ions carrying electric charges Z1 e(>0) and Z2 e(<0), and interaction by the logarithmic Coulomb potential. This system is known to be classically stable for couplings=e 2/k BTc=2/¦Z1Z2¦ (whereT is the temperature). Correlations between equally charged ions are shown to be greatly modified at short distances, in the range c/2<< c, due to gradual ion condensation. The usual integral equations for the pair correlation functions admit no solutions in that range. Preliminary Monte Carlo simulations for the symmetric case (Z1=–Z2) reveal a striking chemical equilibrium between tightly bound ion pairs and free ions, which is reasonably well described by a simple Bjerrum model.  相似文献   

3.
The critical pH values for hydrogen-bonded interpolymer complexes of poly(N-vinylpyrrolidone) and poly(acrylic acid) in aqueous solutions were determined. The effect of polymer concentrations, molecular weights and addition of inorganic salts (NaCl and KCl) on the complexation was studied. Received 29 April 2002 and Received in final form 24 June 2002 Published online: 21 January 2003  相似文献   

4.
Gas‐phase structure, hydrogen bonding, and cation–anion interactions of a series of 1‐(2‐hydroxyethyl)‐3‐methylimidazolium ([HOEMIm]+)‐based ionic liquids (hereafter called hydroxyl ILs) with different anions (X = [NTf2], [PF6], [ClO4], [BF4], [DCA], [NO3], [AC] and [Cl]), as well as 1‐ethyl‐3‐methylimizolium ([EMIm]+)‐based ionic liquids (hereafter called nonhydroxyl ILs), were investigated by density functional theory calculations and experiments. Electrostatic potential surfaces and optimized structures of isolated ions, and ion pairs of all ILs have been obtained through calculations at the Becke, three‐parameter, Lee–Yang–Parr/6‐31 + G(d,p) level and their hydrogen bonding behavior was further studied by the polarity and Kamlet–Taft Parameters, and 1H‐NMR analysis. In [EMIm]+‐based nonhydroxyl ILs, hydrogen bonding preferred to be formed between anions and C2–H on the imidazolium ring, while in [HOEMIm]+‐based hydroxyl ILs, it was replaced by a much stronger one that preferably formed between anions and OH. The O–H···X hydrogen bonding is much more anion‐dependent than the C2–H···X, and it is weakened when the anion is changed from [AC] to [NTf2]. The different interaction between [HOEMIm]+ and variable anion involving O–H···X hydrogen bonding resulted in significant effect on their bulk phase properties such as 1H‐NMR shift, polarity and hydrogen‐bond donor ability (acidity, α). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Crosslinked gel polymer electrolytes are prepared via free radical photo-polymerization of 1,6-hexanediol diacrylate (HDDA) or tri(ethylene glycol) diacrylate (TEGDA) with 1 M LiClO4 dissolved in a solvent mixture of ethylene carbonate (EC) and propylene carbonate (PC). TEGDA-based gel polymer electrolytes containing a polar moiety of ethylene oxide exhibit relatively high ionic conductivities over a temperature range from − 15 to 65 °C in comparison to those based on HDDA. The coordination structure between polar moieties of a polymer backbone and Li+ ions is examined using a Fourier transform infrared (FT-IR) spectroscopy. The results of FT-IR analyses manifest that the CO and COC groups of TEGDA-based polymer matrix form the complex with Li+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号