首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 597 毫秒
1.
基于高温固体氧化物电解池(SOEC)的高温蒸汽电解(HTSE)制氢技术作为一种非常有前景的大规模核能制氢新方法, 受到国际上的迅速关注. 但如何控制电解模式下的极化能量损失和性能衰减是HTSE实用化的关键. 本文通过在线电化学阻抗测试技术, 研究了实际运行状态下的单体固体氧化物池(SOC)在电池模式和电解模式下的极化阻抗分布, 阐述了SOEC与高温固体氧化物燃料电池(SOFC)的差异, 确定了SOEC氢电极支撑层水蒸气扩散过程极化损失大是制约电解池制氢性能提高的主要因素. 在此基础上, 采用聚甲基丙烯酸甲酯(PMMA)造孔剂对氢电极支撑层的微观结构进行了调整和优化. 微结构优化后, 氢电极材料的孔隙率提高了50%, 孔隙为规则圆形, 分布均匀, 更利于气体扩散; 电解电压1.3 V时, 单位面积产氢率高达328.1 mL·cm-2·h-1(标准态), 为改进前电解池的2倍, 实现50 h以上连续稳定性运行. 研究成果可为HTSE的实际应用提供一定的理论数据和技术基础.  相似文献   

2.
高温固体氧化物电解制氢技术   总被引:1,自引:0,他引:1  
高温水蒸气电解制氢是解决大规模氢源问题的潜在途径之一。高温固体氧化物电解池(SOEC)可以利用各种可再生能源以及先进核能提供的热能和电能,在高温下将水蒸气高效电解为氢气和氧气。SOEC结合先进核能可以实现高达50%的热氢转化效率,已经成为近年来能源领域的一个研究热点。本文较详细介绍了SOEC的原理、分类、组成材料和特点,综述了SOEC制氢的发展现状、关键材料和核心技术,展望了SOEC在先进能源技术领域的应用前景。  相似文献   

3.
高温固体氧化物电解水制氢技术   总被引:3,自引:0,他引:3  
张文强  于波  陈靖  徐景明 《化学进展》2008,20(5):778-787
高温水蒸气电解制氢是解决大规模氢源问题的潜在途径之一。高温固体氧化物电解池(SOEC)可以利用各种可再生能源以及先进核能提供的热能和电能,在高温下将水蒸气高效电解为氢气和氧气。SOEC结合先进核能可以实现高达50%的热氢转化效率,已经成为近年来能源领域的一个研究热点。本文较详细介绍了SOEC的原理、分类、组成材料和特点,综述了SOEC制氢的发展现状、关键材料和核心技术,展望了SOEC在先进能源技术领域的应用前景。  相似文献   

4.
研究和开发高性能的钙钛矿型混合电导氧化物是目前高温固体氧化物电解池(SOEC)氧电极材料研究的热点.选择BaxSr1-xCo0.8Fe0.2O3-δ系列材料,通过对材料的容差因子、关口半径、晶格自由体积等计算,以及对平均键能、B位离子的变价能力、催化活性等方面的分析,确定了A位最佳配比.对优化出的Ba0.5Sr0.5Co0.8Fe0.2O3-δ材料的电化学性能进行了研究,并与自制的La0.2Sr0.8MnO3(LSM)氧电极材料进行了比较.结果表明:850℃下阳极极化阻抗(ASR)仅为0.07Ωcm2,远低于LSM;将其应用于SOEC氧电极进行高温电解制氢试验,产氢速率为相同条件下LSM的2.3倍,说明将Ba0.5Sr0.5Co0.8Fe0.2O3-δ用作SOEC阳极材料具有很好的应用前景.  相似文献   

5.
利用太阳能、风能等可再生清洁电能将CO2催化转化为高附加值化学品或燃料,在CO2转化和可再生电能存储方面表现出极具潜力的应用前景.高温固体氧化物电解池(SOEC)可将CO2电催化还原为CO,具有能量效率高、成本低等优点.目前,钙钛矿氧化物已被广泛应用于SOEC电解CO2的阴极材料,但存在电极催化活性低等问题,因而限制其规模化发展和应用.通常采用浸渍、原位溶出或掺杂等策略引入大量活性中心以提升钙钛矿氧化物电极性能.然而,这些策略仍然面临一些挑战,如浸渍法易引入大颗粒物种而堵塞气体传输通道,原位溶出法能耗较大且析出量较少,掺杂法调控活性幅度有限.因此,发展新型简便方法以合理构建具有高度分散活性位点的阴极材料,可有效拓展电化学三相反应界面,进而加快SOEC高温电解CO2的电极动力学速率.本文采用机械研磨法将1.0%NiO高度分散于La0.8Sr0.2Fe03-δ-Ce0.8Sm0.2  相似文献   

6.
王振  于波  张文强  陈靖  徐景明 《化学进展》2013,(7):1229-1236
高温共电解(high temperature co-electrolysis,HTCE)H2O和CO2技术是一种很有前景的清洁燃料制备和CO2减排新技术。该技术可利用可再生能源或核能提供的电能和高温热,通过高温固体氧化物电解池(solid oxide electrolysis cell,SOEC)将H2O和CO2共电解生产合成气(H2+CO),再将制备的合成气用于生产各种液态碳氢燃料。本文详细介绍了利用高温固体氧化物电解池共电解H2O和CO2制备合成燃料的基本原理、发展历程和目前世界各国的研究进展,对该技术的优势和特点进行了分析,并对该技术在关键材料、反应机理等方面存在的问题进行了总结和讨论,最后对其在新能源技术领域的应用前景作了展望。  相似文献   

7.
采用EDTA-柠檬酸盐法制备了(Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG),并与Ce0.9Gd0.1O2-δ(CGO)形成复合阴极PLNCG-CGO。XRD和SEM分析结果表明PLNCG与CGO在1 000℃具有较好的化学相容性。电化学阻抗测试结果表明PLNCG-30%CGO复合阴极在700℃的极化电阻为0.092Ω·cm2;过电位为39.3 m V时,电流密度达到113.3 m A·cm-2。氧分压分析表明电极反应的速率控制步骤为电荷转移过程。阳极支撑单电池(Ni-CGO/CGO/PLNCG-30%CGO)在700℃的最大输出功率密度达到569 m W·cm-2,开路电压(OCV)为0.76 V。  相似文献   

8.
本研究制备了10%Sc掺杂的La0.6Ca0.4Fe0.7Sc0.1Ni0.2O3-δ(LCFSN)材料,采用半电池研究了该材料的氧还原催化活性(ORR)和氧析出催化活性(OER),发现LCFSN的ORR催化活性优于OER催化活性。组装了Ni-YSZ((Y2O3)0.08(ZrO2)0.92)/YSZ/GDC(Gd0.1Ce0.9O2-δ)/LCFSN全电池并研究了其在燃料电池模式(SOFC)和电解池模式(SOEC)下的电化学性能,电池在800℃以H2为燃料时的最高功率密度可达1.471 W/cm2,在750℃, 50%H2O和1.3 V热中性电解电压条件下其产氢速率高达627 mL/(cm2·h...  相似文献   

9.
固体氧化物电解池(SOEC)中的高温二氧化碳电还原(HT-CO2RR)具有对产物CO选择性近乎100%、能量效率高且产率可达到工业标准等特点.该技术能够将可再生能源、二氧化碳和水转化成高能量化合物,是实现碳中和的有效途径,具有较强的应用前景.但这种二氧化碳利用方法容易受电解过程中的积碳影响,严重损害电解池的能量效率和运行寿命.近年来,研究者们努力分析积碳问题,并通过改变反应条件来抑制积碳生成,或尝试设计无积碳产生的电极材料.然而,这些抑制积碳的策略同时牺牲了催化活性和能量效率.因此,未来研究需要兼顾催化电极的性能、电解池的能量效率和稳定性.本文概述了关于减少HT-CO2RR中积碳的研究进展,讨论可能加速其大规模实际应用的未来研究方向,并阐述了SOEC的HT-CO2RR中积碳的形成机制.HT-CO2RR中积碳的形成是由于CO发生了歧化反应:2CO(g)■C+CO2(g),也被称为Boudouard反应.该反应涉及两个基本步骤:(1)表面CO*解离为C  相似文献   

10.
吕功煊 《分子催化》2024,38(2):197-197
我国化工企业在供给大量化工产品的同时也产生一定量的污水。这些污水成分复杂、有机物浓度偏高、高盐度、难以用生化法降解、处理难度大。常规的废水处理方法占地面积大、低效,要做到达标排放费用高昂。与其耗费大量资源处理污水达标排放,不如利用新技术将污水转化为可使用的化工产品,如氢和其它化学品。利用污水产生的氢可视为蓝氢或者绿氢,尤其是电解的动力来自于可再生能源的情况下。 经典的水电解制氢工艺有碱性膜电解、质子交换膜电解和高温氧化物电解,这些工艺都需要使用纯水作为原料。若将化工污水作为电解原料制氢,需要开发可耐受适量有机物、盐分的新电解电极催化剂和与之相匹配的膜,同时还需要攻克材料的腐蚀问题。 近日,中国科学院兰州化学物理研究所吕功煊团队利用AEM技术对化工废水电解制氢进行了研究,发展出以复合过渡金属为主要组成的复合电极作为AEM电解槽的阳极,镍基复合电极作为阴极的电极系统,通过串联N个相同活性面积的小室组成AEM电解槽系统。在单个小室工作电压为1.6-2.2 V的情况下,实现了电流密度为80-300 mA cm-2时稳定制氢,电解槽系统可连续运行100天,产氢的电效率可达到60%,在优化条件下可达到80%。该技术攻克了电解槽膜堵塞的难题,实现了化工废水的资源化利用转化为绿氢。后续拟通过优化电极材料的组成和改进AEM电解制氢系统,结构进一步降低能耗、提高产氢效率、实现氢气的高效分离和纯化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号