首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current commercially available ion mobility spectrometers are intended for the analysis of chemicals in the gas phase. Sample introduction methods, such as direct air sampling, a GC injector or a thermal desorber, are commonly an integral part of these instruments. This paper describes an electrospray ionization ion mobility spectrometer system that allows direct introduction samples in solution phase. This allows direct analysis of non-volatile organic and biological samples, and avoids decomposition of thermally liable samples, providing reliable chemical identification. In addition, the new ion mobility spectrometer allows mobility analysis with high resolving power. Commonly used commercial IMS systems provide resolving powers between 10 and 30; this new ion mobility spectrometer has resolving power greater than 60 for routine analysis. A high resolution instrument is necessary for many applications where a complex mixture needs to be separated and quantified. This paper demonstrates the advantages of using a high resolution ion mobility spectrometer and an electrospray ionization source for the analysis of non-volatile pharmaceuticals as well as dissolved explosive in solution phase.  相似文献   

2.
The major uncertainty related to ion mobility spectrometry is the lack of knowledge about the characteristics of the ions detected. When using a radioactive atmospheric pressure ionisation source (e.g. 63Ni), from theory proton bound water clusters are expected as reactant ions. When analyte ions occur, proton transfer should lead to proton-bound monomer and dimer ions. To increase the knowledge about those ionisation processes in an ion mobility spectrometer (IMS), a ß-radiation ionisation source was coupled to a mass spectrometer (MS) and an identical one to an IMS. Exemplarily, acetone, limonene and 2- and 5-nonanone were introduced into both instruments in varying concentrations. By correlating the MS and IMS spectra, conclusions about the identities of the ions detected by IMS could be drawn. Proton-bound monomer, dimer and even trimer ions (MH+, 2MH+, 3MH+) could be observed in the MS spectra for acetone and 5-nonanone and could be assigned to the related signals detected by IMS. The oligomers could be expected from theory for increasing concentration. Limonene and 2-nonanone yielded in a variety of different ions and fragments indicating complex gas phase ion chemistry. Those findings on the obviously different behaviour of different analytes require further research focussed on the ion chemistry in IMS including the comparison of different ionisation sources.  相似文献   

3.
An ion mobility spectrometer that can easily be installed as an intermediate component between a commercial triple-quadrupole mass spectrometer and its original atmospheric pressure ionization (API) sources was developed. The curtain gas from the mass spectrometer is also used as the ion mobility spectrometer drift gas. The design of the ion mobility spectrometer allows reasonably fast installation (about 1 h), and thus the ion mobility spectrometer can be considered as an accessory of the mass spectrometer. The ion mobility spectrometer module can also be used as an independently operated device when equipped with a Faraday cup detector. The drift tube of the ion mobility spectrometer module consists of inlet, desolvation, drift, and extraction regions. The desolvation, drift and extraction regions are separated by ion gates. The inlet region has the shape of a stainless steel cup equipped with a small orifice. Ion mobility spectrometer drift gas is introduced through a curtain gas line from an original flange of the mass spectrometer. After passing through the drift tube, the drift gas serves as a curtain gas for the ion-sampling orifice of the ion mobility spectrometer before entering the ion source. Counterflow of the drift gas improves evaporation of the solvent from the electrosprayed sample. Drift gas is pumped away from the ion source through the original exhaust orifice of the ion source. Initial characterization of the ion mobility spectrometer device includes determination of resolving power values for a selected set of test compounds, separation of a simple mixture, and comparison of the sensitivity of the electrospray ionization ion mobility spectrometry/mass spectrometry (ESI-IMS/MS) mode with that of the ESI-MS mode. A resolving power of 80 was measured for 2,6-di-tert-butylpyridine in a 333 V/cm drift field at room temperature and with a 0.2 ms ion gate opening time. The resolving power was shown to be dependent on drift gas flow rate for all studied ion gate opening times. Resolving power improved as the drift gas flow increased, e.g. at a 0.5 ms gate opening time, a resolving power of 31 was obtained with a 0.65 L/min flow rate and 47 with a 1.3 L/min flow rate for tetrabutylammonium iodide. The measured limits of detection with ESI-MS and with ESI-IMS/MS modes were similar, demonstrating that signal losses in the IMS device are minimal when it is operated in a continuous flow mode. Based on these preliminary results, the IMS/MS instrument is anticipated to have potential for fast screening analysis that can be applied, for example, in environmental and drug analysis.  相似文献   

4.
Micro-plasma: a novel ionisation source for ion mobility spectrometry   总被引:2,自引:0,他引:2  
Ion mobility spectrometry is an analytical method for identification and quantification of gas-phase analytes in the ppbv-pptv range. Traditional ionisation methods suffer from low sensitivity (UV light), lack of long-term stability (partial discharge), or legal restrictions when radioactive sources are used. A miniaturised helium plasma was applied as ionisation source in an ion mobility spectrometer (IMS). Experiments were carried out to compare plasma IMS with β-radiation IMS. It could be demonstrated that the plasma IMS is characterised by higher sensitivity and selectivity than β-radiation ionisation. Plasma IMS is approximately 100 times more sensitive than the β-radiation IMS. Furthermore, variable sensitivity can be achieved by variation of the helium flow and the electric field of the plasma, and variable selectivity can be achieved by changing the electric field of the IMS. The experimental arrangement, optimisation of relevant conditions, and a typical application are presented in detail. Figure Micro-plasma used in ion mobility spectrometry  相似文献   

5.
Excluding the ion source, an ion mobility spectrometer is fundamentally comprised of drift chamber, ion gate, pulsing electronics, and a mechanism for amplifying and recording ion signals. Historically, the solutions to each of these challenges have been custom and rarely replicated exactly. For the IMS research community few detailed resources exist that explicitly detail the construction and operation of ion mobility systems. In an effort to address this knowledge gap we outline a solution to one of the key aspects of a drift tube ion mobility system, the ion gate pulser. Bradbury-Nielsen or Tyndall ion gates are found in nearly every research-grade and commercial IMS system. While conceptually simple, these gate structures often require custom, high-voltage, floating electronics. In this report we detail the operation and performance characteristics of a wifi-enabled, MOSFET-based pulser design that uses a lithium-polymer battery and does not require high voltage isolation transformers. Currently, each output of this circuit follows a TTL signal with ~20 ns rise and fall times, pulses up to +/? 200 V, and is entirely isolated using fiber optics. Detailed schematics and source code are provided to enable continued use of robust pulsing electronics that ease experimental efforts for future comparison.  相似文献   

6.
A program for simulation of ion trajectories in ion mobility spectrometry (IMS) instruments has been developed and incorporated into SIMION 7.0 [Int. J. Mass Spectrom. 200 (2000) 3–25]. Simulations were based on elastic collisions between ions and gas particles and conducted for an IMS drift tube. The program was validated by comparing the reduced mobility of helium ions derived from the simulation with the experimental data for helium ions in neon drift gas in low electric fields. Typical IMS parameters, including pressure, temperature, and flow rate of the drift gas were taken into account in the simulations. The program demonstrates capabilities of generating IMS spectra and predicting ion transport efficiency and separating ions. For the IMS drift tube studied, a correlation between imperfection of the electric field distribution and low resolution has been observed.  相似文献   

7.
Process analysis using ion mobility spectrometry   总被引:7,自引:0,他引:7  
Ion mobility spectrometry, originally used to detect chemical warfare agents, explosives and illegal drugs, is now frequently applied in the field of process analytics. The method combines both high sensitivity (detection limits down to the ng to pg per liter and ppbv/pptv ranges) and relatively low technical expenditure with a high-speed data acquisition. In this paper, the working principles of IMS are summarized with respect to the advantages and disadvantages of the technique. Different ionization techniques, sample introduction methods and preseparation methods are considered. Proven applications of different types of ion mobility spectrometer (IMS) used at ISAS will be discussed in detail: monitoring of gas insulated substations, contamination in water, odoration of natural gas, human breath composition and metabolites of bacteria. The example applications discussed relate to purity (gas insulated substations), ecology (contamination of water resources), plants and person safety (odoration of natural gas), food quality control (molds and bacteria) and human health (breath analysis).  相似文献   

8.
In recent years, the resolving power of ion mobility instruments has been increased significantly, enabling ion mobility spectrometry (IMS) to be utilized as an analytical separation technique for complex mixtures. In theory, decreasing the drift tube temperature results in increased resolution due to decreased ion diffusion. However, the heat requirements for complete ion desolvation with electrospray ionization (ESI) have limited the reduction of temperatures in atmospheric pressure ion mobility instruments. Micro-electrospray conditions were investigated in this study to enable more efficient droplet formation and ionization with the objective of reducing drift tube temperatures and increasing IMS resolution. For small molecules (peptides), the drift tube temperature was reduced to ambient temperature with good resolution by employing reduced capillary diameters and flow rates. By employing micro-spray conditions, experimental resolution values approaching theoretically predicted resolution were achieved over a wide temperature range (30 to 250 °C). The historical heat requirements of atmospheric pressure IMS due to ESI desolvation were eliminated due to the use of micro-spray conditions and the high-resolution IMS spectra of GLY-HIS-LYS was obtained at ambient temperature. The desolvation of proteins (cytochrome c) was found to achieve optimal resolution at temperatures greater than 125 °C. This is significantly improved from earlier IMS studies that required drift tube temperatures of 250°C for protein desolvation.  相似文献   

9.
H. Borsdorf  E.G. Nazarov 《Talanta》2007,71(4):1804-1812
The ion mobilities of halogenated aromatics which are of interest in environmental chemistry and process monitoring were characterized with field-deployable ion mobility spectrometers and differential mobility spectrometers. The dependence of mobility of gas-phase ions formed by atmospheric-pressure photoionization (APPI) on the electric field was determined for a number of structural isomers. The structure of the product ions formed was identified by investigations using the coupling of ion mobility spectrometry with mass spectrometry (APPI-IMS-MS) and APPI-MS. In contrast to conventional time-of-flight ion mobility spectrometry (IMS) with constant linear voltage gradients in drift tubes, differential mobility spectrometry (DMS) employs the field dependence of ion mobility. Depending on the position of substituents, differences in field dependence were established for the isomeric compounds in contrast to conventional IMS in which comparable reduced mobility values were detected for the isomers investigated. These findings permit the differentiation between most of the investigated isomeric aromatics with a different constitution using DMS.  相似文献   

10.
Due to the proteomics revolution, multi-dimensional separation and detection instruments are required to evaluate many peptides and proteins in single samples. In this study, electrospray ionization (ESI) ion mobility spectrometry (IMS) was evaluated as an additional separation after HPLC separations. Common HPLC mobile phase compositions (solvents, acid modifiers, and buffers) were assessed for the effect on ESI-IMS response. Up to 5 mM sodium phosphate, a non-volatile buffer, was able to be electrosprayed into the IMS without degradation of the instrumental performance. Due to the rapid separation times of IMS, multiple IMS spectra were obtained within a single HPLC peak. A five-peptide mixture was separated in a capillary HPLC column under isocratic conditions within 3 min. Coelution of two peaks due to non-optimal HPLC conditions occurred and these two peaks could not be distinguished by HPLC with UV detection. In contrast, the single ion mobility chromatograms provided separation of each peptide as well as providing a second degree of analyte identification (HPLC retention time and IMS mobility). Furthermore, IMS-MS analysis of the five peptides and comparison with HPLC retention times showed that each peptide had a unique retention time-ion mobility-mass to charge value. This work showed that IMS could be employed for direct separation and detection of HPLC eluents and also could be combined with HPLC-MS for three unique dimensions of separation.  相似文献   

11.
A novel surface ionization source for ion mobility spectrometer   总被引:1,自引:0,他引:1  
A surface ionization (SI) source is designed and prepared for ion mobility spectrometer (IMS). The source acts not only as an emitter but also an ion injector which can inject ions periodically into the drift region of drift tube. Using the dual-role source, the dimension of the drift tube can be decreased and the circuit for high voltage can be simplified efficiently. The IMS with the SI source has a response range of ∼4 orders of magnitude and a good reproducibility to tri-ethylamine. Compared with radioactive ionization (RI), the ultra-short time for ion injection and the zero level base line of ion mobility spectrum are characteristics of the surface ionization.  相似文献   

12.
The major reactant ion in conventional ion mobility spectrometry (IMS) is the hydronium ion, H3O+ which is produced in the usual ionization sources such as corona discharge or radioactive sources. Using the hydronium reactant ion, mostly the analytes with proton affinity higher than that of water are ionized. A broader range of compounds can be detected by IMS if other alternative ionization channels, such as charge transfer from NO+, are employed. In this work we introduce a simple and novel method for producing NO+ as the major reactant ion in IMS. This was achieved by adding neutral NO to the corona discharge ionization source. The neutral NO was prepared via an additional discharge in an air stream, flowing into the corona discharge source. A curtain plate was mounted in front of the corona discharge to prevent the influence of the analyte on the production of NO+. Using this technique, the reactant ion could easily and quickly switch between the H3O+ and NO+. The performance of the new source was evaluated by recording ion mobility spectra of test compounds with both H3O+ and NO+ reactant ions.  相似文献   

13.
Asbury GR  Klasmeier J  Hill HH 《Talanta》2000,50(6):738-1298
The analysis of explosives with ion mobility spectrometry (IMS) directly from aqueous solutions was shown for the first time using an electrospray ionization technique. The IMS was operated in the negative mode at 250°C and coupled with a quadrupole mass spectrometer to identify the observed IMS peaks. The IMS response characteristics of trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 4-nitrotoluene (4-NT), trinitrobenzene (TNB), cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), cyclo-tetramethylene-tetranitramine (HMX), dinitro-ethyleneglycol (EGDN) and nitroglycerine (NG) were investigated. Several breakdown products, predominantly NO2 and NO3, were observed in the low-mass region. Nevertheless, all compounds with the exception of NG produced at least one ion related to the intact molecule and could therefore be selectively detected. For RDX and HMX the [M+Cl] cluster ion was the main peak and the signal intensities could be greatly enhanced by the addition of small amounts of sodium chloride to the sprayed solutions. The reduced mobility constants (K0) were in good agreement with literature data obtained from experiments where the explosives were introduced into the IMS from the vapor phase. The detection limits were in the range of 15–190 μg l−1 and all calibration curves showed good linearity. A mixture of TNT, RDX and HMX was used to demonstrate the high separation potential of the IMS system. Baseline separation of the three compounds was attained within a total analysis time of 6.4 s.  相似文献   

14.
The overall objective of this project was to develop an analytical method that utilizes structure selective ion molecule interactions (SSIMI) in ion mobility spectrometry (IMS) to shift the mobility of a targeted analyte through the addition of a gas phase modifier to the buffer gas. IMS is a sensitive, rapid method for the detection of harmful chemicals; however false alarm responses do occur and a reduction in their frequency decrease both the cost and time required for detection. The investigation reported here probed the effects of a series of buffer gas modifiers on the mobilities of chemical warfare agent simulants (CWAs), toxic industrial chemicals (TICs) and a known interference (butyl carbitol) found in fire extinguishing agents. The major finding of this research was that a modifier with a proton affinity similar to, but not greater than, the target analyte produced the greatest changes in mobilities due to the formation of an ion cluster between the neutral modifier and target analyte ion. Mass spectrometry was utilized to confirm the formation of ion-neutral clusters that caused the target ion to shift its mobility. While a number of modifiers were screened, acetonitrile and isobutyronitrile were found to have sufficiently selective SSIMI with the target compound. For example, in the presence of acetonitrile modifier, the protonated response ion of the CWA simulant DMMP, [DMMP]H+, had a mobility shift of 10.8 %, but the mobility was unchanged for the interferent, butyl carbitol. The mobility of the simulant DMMP decreased with the introduction of modifiers, while the mobility of the interference did not change, demonstrating the potential of the SSIMI technique for reducing false alarm rates.  相似文献   

15.
The capability of corona discharge ion mobility spectrometry (CD-IMS) for separation and quantification of sarcosine and L-alanine isomers has been evaluated for the first time. Although these two compounds have the same mass and m/z values in mass spectrometer, ion mobility spectrometry was able to separate and determine them. Variables including carrier gas flow rate, injection and cell temperatures were optimized. The reduced mobilities (K 0) of sarcosine and L-alanine were 1.96 and 1.83, respectively, based on the reduced mobility of nicotinamide. At the optimized conditions the detection limit of sarcosine and L-alanine were 0.7 and 0.9 μg/mL, respectively. The relative standard deviation (RSD) was found to be 6%. Furthermore, a sample injection port of a gas chromatograph was also modified to introduce solvent-free samples into the IMS.  相似文献   

16.
Despite the recent, successful efforts to detect mycotoxins, new methods are still required to achieve higher sensitivity, more simplicity, higher speed, and higher accuracy at lower costs. This paper describes the determination of ochratoxin A (OTA) using corona discharge ion mobility spectrometry (IMS) in the licorice root. A quick screening and measuring method is proposed to be employed after cleaning up the extracted OTA by immunoaffinity columns. The ion mobility spectrometer is used in the inverse mode to better differentiate the OTA peak from the neighboring ones. After optimization of the experimental conditions such as corona voltage, injection port temperature, and IMS cell temperature, a limit of detection (LOD) of 0.010 ng is obtained. Furthermore, the calibration curve is found to be in the range of 0.01-1 ng with a correlation coefficient (R2) of 0.988. Licorice roots were analyzed for their OTA content to demonstrate the capability of the proposed method in the quantitative detection of OTA in real samples.  相似文献   

17.
In this work, ion mobility spectrometry (IMS) function as a detector and another dimension of separation was coupled with CE to achieve two‐dimensional separation. To improve the performance of hyphenated CE‐IMS instrument, electrospray ionization correlation ion mobility spectrometry is evaluated and compared with traditional signal averaging data acquisition method using tetraalkylammonium bromide compounds. The effect of various parameters on the separation including sample introduction, sheath fluid of CE and drift gas, data acquisition method of IMS were investigated. The experimental result shows that the optimal conditions are as follows: hydrodynamic sample injection method, the electrophoresis voltage is 10 kilo volts, 5 mmol/L ammonium acetate buffer solution containing 80% acetonitrile as both the background electrolyte and the electrospray ionization sheath fluid, the ESI liquid flow rate is 4.5 μL/min, the drift voltage is 10.5 kilo volts, the drift gas temperature is 383 K and the drift gas flow rate is 300 mL/min. Under the above conditions, the mixture standards of seven tetraalkylammoniums can be completely separated within 10 min both by CE and IMS. The linear range was 5–250 μg/mL, with LOD of 0.152, 0.204, 0.277, 0.382, 0.466, 0.623 and 0.892 μg/mL, respectively. Compared with traditional capillary electrophoresis detection methods, the developed CE‐ESI‐IMS method not only provide two sets of qualitative parameters including electrophoresis migration time and ion drift time, ion mobility spectrometer can also provide an additional dimension of separation and could apply to the detection ultra‐violet transparent compounds or none fluorescent compounds.  相似文献   

18.
In the present work we describe the principles of operation, versatility and applicability of a trapped ion mobility spectrometer (TIMS) analyzer for fast, gas-phase separation of molecular ions based on their size-to-charge ratio. Mobility-based separation using a TIMS device is shown for a series for isobar pairs. In a TIMS device, mobility resolution depends on the bath gas velocity and analysis scan speed, with the particularity that the mobility separation can be easily tuned from low to high resolution (R?>?50) in accordance with the analytical challenge . In contrast to traditional drift tube IMS analyzer, a TIMS device can be easily integrated in a mass spectrometer without a noticeable loss in ion transmission or sensitivity, thus providing a powerful separation platform prior to mass analysis.  相似文献   

19.
This paper explains the effect of pressure on separation factor, resolving power (defined based on a single peak), and resolution (defined based on two adjacent peaks) in ion mobility spectrometry. IMS spectra were recorded at various pressures ranging from 39 hPa (29 Torr) up to atmospheric pressure and various ion gates ranging from 50 to 225 μs. The results show that the IMS peaks shift perfectly linear with pressure so that separation factors remain unaffected by pressure. However, pressure has strong influence on resolving power and resolution. Reducing pressure at constant pulse width decreases the resolving power and resolution. On the other hand, the decrease in resolution can be compensated by shortening the ion pulse width since reducing pressure results in a higher ion current.  相似文献   

20.
In this work, the use of MALDI traveling wave ion mobility spectrometry‐mass spectrometry (MALDI‐TWIMS‐MS) for stereoselective structural analysis of direct cleavage and identification of 2‐substituted piperidines obtained through solid‐phase asymmetric synthesis by using heterogeneous 8‐phenylmenthyl‐based chiral auxiliary resins. A strategy for gas‐phase chiral and structural characterization of small molecular weight molecules by using MALDI‐IMS‐MS technique is discussed. Because both MALDI and IMS do not directly offer chiral resolution, an easy methodology by adding a chiral phase is described to carry out in situ online ion/molecule complexation with different chiral analytes inside the mass spectrometer. Piperidine enantiomers were resolved, and separation obtained shows dependence of surface areas. To corroborate this assumption and elucidate the separation mechanism to accomplish an analytical technique by which fast determination of the chirality of molecules may be determined for a wide range organic compound applications, it was performed DFT calculations to determine the cross‐sectional areas of proton‐bound dimer complexes. Drift times are affected by cross‐sectional areas, correlating bigger times with bigger molecular volumes during the ion mobility experiments of proton‐bound dimer complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号